In Proceedings of the 2nd USENIX Workshop on Electronic Commerce, November 1996, pp. 123-133

Anonymous Atomic Transactions

Jean Camp Michael Harkavy
Sandia National Labs
Livermore, CA 94551

ljcamp@ca.sandia.gov bif@cs.cmu.edu

Abstract

We show here an example of a protocol that satisfies
anonymity properties while providing strong ACID
(atomic, consistent, isolated, durable) transactional
properties, resolving an open question. This allows
us to provide electronic commerce protocols that are
robust even in the event of message loss and commu-
nication failures. We use blind signature tokens to
control values. We use a separate transaction log to
reduce trust assumptions between the merchant,the
consumer, and the bank.

1 Introduction

Consumer privacy is an important goal of elec-
tronic payment systems. Some researchers have ap-
proached this question by adopting a token-based
model. These tokens are meant to act as a type
of currency: they can be used to purchase a good,
but like coins, they do not reveal the identity of
the holder. These systems offer privacy in mak-
ing a purchase. Some typical examples of token-
based electronic payment protocols (“digital cash”
protocols) are (2, 3, 7, 5, 15]. These protocols pro-
vide consumers with the ability to make anonymous
purchases, purchases which can not be tracked by a
bank to identify the purchaser. A stronger form of
anonymity can be considered — anonymity in which
the identity of the purchaser is hidden from both the
bank and the merchant selling the goods.

But what happens when things go wrong? If
the network (or merchant server) goes down dur-
ing a purchase, how can users complain about non-
delivered goods? If their purchases are anonymous,
how can they prove that they really did pay and did

This work was supported in part by the Defense Ad-
vanced Research Projects Agency (ARPA contract F33615-
93-1-1330), the National Science Foundation (NSF coopera-
tive agreement IR-9411299), the US Postal Service, and Visa
International. This work is the opinion of the authors and
does not necessarily represent the view of their employers,
funding sponsors, or the US Government.

Carnegie Mellon Univ.
Pittsburgh, PA 15213

Bennet Yee
UC San Diego
La Jolla, CA 92093
bsy@cs.ucsd. edu

J. D. Tygar
Carnegie Mellon Univ.
Pittsburgh, PA 15213

tygar€cs.cmu. edu

not receive the goods? How can electronic judges
and merchants adjudicate these complaints? How
can they determine whether the consumer was re-
ally denied the goods, or whether the consumer is
Just trying to illegitimately acquire merchandise for
free? And how can a consumer obtain satisfaction
when the purchase is anonymous? These questions
are especially important because the Internet today
is an unreliable network — anyone who has spent
some time browsing the web knows that commu-
nications often fail. Unscrupulous consumers and
merchants will certainly attempt to take every ad-
vantage of system failures.

To 1illustrate the problem, consider the follow-
ing simplified digital cash protocol: consumers pay
for electronic goods with tokens. These tokens are
anonymous, but designed so that if the consumer
ever uses the same token twice, the consumer’s iden-
tity is revealed. Suppose a consumer pays for a
good, but before she can receive acknowledgment
that the merchant received payment, the network
fails. Now, what can the consumer do? She doesn’t
know whether the merchant received the payment or
not. She has two basic strategies:

¢ She can spend the token again, by returning her
token to the bank or spending it with a second
merchant. But then, if the first merchant re-
ally did receive the token, she may be creating
a race condition. Whoever gets the token to
the bank first will get the money. Worse, when
both tokens do reach the bank, the consumer
will be accused of double-spending. Now, one
can imagine variations on the digital cash pro-
tocol where a consumer might file a special type
of complaint with a bank, but the design of this
variation is non-trivial. Most types of variations
will either reveal the consumer’s identity, allow
anew type of fraud, be subject to ambiguous re-
sults if a message is not delivered, or have other
undesirable effects. This topic was addressed at
length in [4, 17, 18].

e She can wait and not spend the money. But in

USENIX Association

Second Workshop on Electronic Commerce

123

this case, the consumer has locked up her funds.
If the merchant did not receive her payment,
then the consumer may be waiting for a very
long time!

A standard approach to addressing the question
of reliability is the notion of ACID (atomic, con-
sistent, isolated, durable) transactions [10]. In the
distributed systems community, ACID transactions
have been widely adopted as the standard mecha-
nism for realizing distributed transactions. The pay-
ment transactions should be failure-atomic, so that
failures in parts of the system will not leave the en-
tire system in some ambiguous, intermediate state.

How can we interpret these transactions in the
context of electronic commerce? Tygar [17] has pro-
posed using the classification below. Tygar began by
assuming a model where consumers are purchasing
electronic goods and services that will be delivered
over a network (such as WWW page, for example).
For tangible physical goods, alternative definitions
are required to properly satisfy the atomicity prop-
erty (motivating a multi-billion dollar industry in
tracked, receipted courier delivery of messages and
packages!) Tygar defines three classes of atomicity
for electronic goods.

¢ Money atomic transactions feature atomic
transfer of electronic money — the transfer ei-
ther completes entirely or not at all. In money
atomic protocols, money is not created or de-
stroyed by purchase transactions.

¢ Goods atomic transactions are money atomic
and also ensure that the consumer will receive
goods if and only if the merchant is paid. Goods
atomic transactions provide an atomic swap of
the electronic goods and funds — similar to the
effect of “cash on delivery” parcels.

o Certified delivery protocols are goods atomic
and also allow both the consumer and merchant
to prove exactly what was delivered. If there is
a dispute, this evidence can be shown to a judge
to prove exactly what goods were delivered.

Using this classification, we can see that the sim-
plified digital cash protocol described above is not
money atomic. The obvious question is: are anony-
mous atomic transactions possible? [17] This has
been an open question.

Our first attempt to solve this question would be
to use standard techniques to make a digital cash
transaction atomic. The standard method for do-
ing this is two-phase commitment [1, 9, 10, 11, 12].

In short, in two-phase commitment, one party as-
sumes the role of transaction coordinator. That
party knows and records the identities of all other
parties in a non-volatile log. FEach of the parties
records its state before the transaction begins. As
the transaction moves forward, various parties com-
plete their required computation. Before changing
the permanent store of those values, the parties send
a message to the coordinator indicating that they are
ready to commit. (Alternatively, they may abort the
transaction by sending a negative message to the co-
ordinator.) After receiving ready messages from all
parties, the coordinator issues a commit message to
all parties, causing the transaction to become per-
manent. Alternatively, if the coordinator receives an
abort request or if the coordinator can not establish
contact with one of the parties, the coordinator can
abort the transaction by sending an abort message;
in that case, all parties reverse the computation that
they conducted towards the transaction.

So, as we see, the two-phase commit protocol re-
quires that at least one party participating in the
protocol (the transaction coordinator) knows the
identity of all the parties involved. Additionally,
two-phase commit assumes a fail-stop fault model,
where the parties to the protocol can fail by stop-
ping due to a crash, but not by lying or otherwise
trying to cheat. In electronic commerce protocols, of
course, we must be able to tdlerate arbitrary Byzan-
tine faults; one way to do this is to provide suffi-
cient auditing information to detect these faults and
later assign responsibility. This makes the standard
two-phase commit protocol inappropriate for use in
anonymous electronic commerce systems.

An alternative approach to this problem was at-
tempted by Jakobsson [14], where the payment pro-
tocol is divided into two halves. Here, the digital
cash is “rip-spent”: after the first half of the spend-
ing protocol, the consumer has committed to buying
from the merchant but has not yet spent the money
— some partial information is transferred, so that if
the consumer attempts to abort the transaction, the
digital cash is either lost (becomes unsable), or the
identity of the consumer is revealed. This approach,
unfortunately, is not satisfactory: each of the half
protocols themselves may be interrupted, leaving the
digital cash again in an ambiguous state.

1.1 Our contribution

Let us return to the open question mentioned above:
Can anonymous transactions be atomic? Some re-
searchers have speculated that the answer is nega-
tive. However, in this paper, we reverse this com-

124

Second Workshop on Electronic Commerce

USENIX Association

monly held belief by answering the question affirma-
tively. We present a set of protocols for electronic
commerce transactions which combines anonymity
and atomicity while requiring very limited trust as-
sumptions. We prove the goods atomicity properties
of our protocols. For certified delivery we provide
two variations:

s one-sided certified delivery where the con-
sumer can prove what goods were delivered in
case adjudication is needed (e.g., the goods do
not match their description). The merchant
is also guaranteed to be paid if and only if
the consumer successfully obtains the electronic
goods. On the other hand, the merchant can
not prove that the consumer successfully re-
ceived the goods promised. (This is the protocol
presented in Section 3.3. As we argue below, if
the burden of proof is on the consumer, then
this method suffices to allow the consumer to
prove the results of the transaction.)

¢ two-sided certified delivery which provides
proof of the delivery of specific contents to both
parties.

As we discuss below, there are tradeoffs between
these two properties — two-sided certified delivery
still keeps the identity of the consumer anonymous,
but it does reveal some information about a crypto-
graphic key used by the consumer. (This normally
is not a problem since a consumer is expected to
choose unique cryptographic keys for each transac-
tion. However, we do discuss reusable keys below in
Section 8.1, and if this option is chosen, there is a
shade of privacy lost. This variation is presented in
Section 8.6.)

It is important to emphasize that we have not de-
signed this protocol with performance considerations
in mind. The efficiency of digital cash protocols is
already controversial [16, 17] and our mechanisms
also require large amounts of computation. The in-
tellectual contribution of this paper lies in showing
that the widely held belief that atomic transactions
can never be anonymous is not correct.

Section 2 explains our basic cryptographic and
system assumptions. Section 3 presents a high level
overview of the design of our protocols, followed by a
more detailed description of our protocols. Section
4 informally analyzes the correctness of the proto-
cols, and gives an argument for verification of the
one-sided certified delivery property. Section 5 de-
scribes the logging requirements for all the parties
in our system. Section 6 details the privacy proper-
ties of our system, giving an exhaustive list of the

types of information available to the various parties.
In Section 7, we review the basic trust assumptions
required by our system and show that strengthen-
ing these assumptions leads to simplified versions of
the system. Section 8 presents several variations to
our basic protocols, allowing partial spending of the
withdrawn amount, greater efficiency by permitting
public key reuse, etc. Finally, Section 9 concludes
the paper.

2 Assumptions

In designing our protocols, we made a variety of as-
sumptions about the capabilities of the participants
and made use of several cryptographic tools. This
section describes our assumptions and introduces
some of the important tools which will be used.

Four parties participate in our protocol: a con-
sumer (', a merchant M, a bank B, and a transac-
tion log L. Now, of course, our parties are designed
to allow multiple, scalable, simultaneous transac-
tions that do not interfere with each other — this
is the isolation requirement in ACID transactions.
Thus, there can be many more than four parties —
but in a single transaction, there will only be four
parties.

All parties can perform basic cryptographic oper-
ations, e.g. cryptographic hash computation, signa-
ture computation and verification. All parties have
well-known or verifiable public keys. All signatures
can be verified by the receiving party.

To justify the claim of anonymity, the identity
of the consumer must be protected from all other
parties (that is, we make assumptions of strong
anonymaty).

We assume that the communications channels (in
particular those between the consumer and the other
parties) are anonymous, i.e. no information about
the identity of the consumer is gained by commu-
nicating with the consumer. Now, in practice, this
may be a questionable assumption — can’t a mer-
chant or a third party infer the consumer’s identity
through the TCP/IP return address on his pack-
ets? Supporting this assumption in an implemen-
tation may involve a fifth party, an anonymizer,
which the consumer trusts not to reveal identity
information.[§]

To provide atomicity, a modified, cryptographic
version of the two-phase commit protocol is imple-
mented using an external, publicly accessible trans-
action log. The transaction log receives and records
messages, and then reproduces the recorded mes-
sages. The log localizes the global commit decision

USENIX Association

Second Workshop on Electronic Commerce

125

to a single entity. The log also acts as a time-keeper,
determining when to abort transactions due to a
time-out.

Communication channels are assumed to be se-
cure. The method used to implement this security
(e.g. public keys) is not important to the function-
ing of the protocol. Some messages could be left
unsecured, improving efficiency at the cost of a lim-
ited loss of privacy, but the details of this are not
currently addressed.

Chaum [6] made a critical discovery that enabled
the idea of digital cash to take place: blinded tokens.
The use of blinded tokens is essential to our proto-
cols. A token is a piece of data which can be created
only by a specific issuer. Creation of a token with-
out assistance from the issuer should be computa-
tionally infeasible. Blinded tokens are created by an
interaction of a consumer with the issuer (the bank).
After the interaction, the consumer has knowledge
of a token which the issuer can not specifically iden-
tify. That is, the issuer does not know which to-
ken (from the range of valid tokens) the consumer
has obtained. The tokens used in this protocol will
have the additional property that each token, de-
noted Q*, specifies the public half (including modu-
lus), denoted @, of a public key pair.

It is assumed that the consumer has an account
with the bank, and that the bank can mint blinded
token currency. This requires the bank to maintain
token information as detailed in Section 5.

The transaction protocol given assumes minimal
preparation and delivery costs for the goods. Goods
must be prepared and delivered, although not in a
usable form, prior to any guarantee of payment to
the merchant.

Message signatures are computed on hash values
of the plaintext, and then appended to the plaintext
to form a signed message. This is relevant in the
first step of the purchase protocol, 1, for efficiency
reasons. It is also relevant in the second step, 2, so
that the bank can read @™ in order to determine Q.
This assumption can be dropped with minor changes
to these steps.

3 Protocols

In this section, we first give a high level overview of
our anonymous atomic transaction system design,
and then describe our abstract protocols.

Critical to our system is the use of a blind signa-
ture in the withdrawal protocol. Here, the consumer
obtains a blinded token from the bank as a result of
withdrawing money from the consumer’s account.

Unlike previous works where the blind-signed data
is a token which represents value, in our protocol
the public key of a newly generated public/private
key pair is signed; this certifies a trapdoor func-
tion rather than data to be disclosed in the pur-
chase protocol. This effectively provides a tempo-
rary, anonymous certificate of ownership of the with-
drawn amount. The private key of the key pair is
known only to the consumer, and it is used with the
certificate to anonymously authorize transfers of the
withdrawn amount to a merchant’s account. Au-
thorization messages signed with this key are used
in our transactions to signal readiness to commit to
a purchase transaction, and to serve as part of the
“paper trail” to prove that the token has been ex-
pended.

In the purchase phase, the merchant delivers en-
crypted goods along with a signed contract providing
the goods description and the price. If the consumer
finds the contract acceptable, readiness to commit is
sent to the bank in the form of a signed message (us-
ing the above blind-certified key) to authorize the
transfer of funds if the transaction commits, and
then the bank similarly signals its readiness to the
merchant with a message promising an anonymous
deposit into the merchant account when the trans-
action commits. The transaction commits when the
transaction log records a message from the merchant
which contains the merchandise key.

Timely delivery of the merchant’s message to the
transaction log results in the transaction commit-
ting, thereby crediting the merchant’s account and
releasing the merchandise key to the consumer. If
the merchant’s message does not arrive before the
expiration time, the transaction aborts.

Note that unlike standard two-phase commit,
there is no central transaction coordinator; instead,
the various parties’ readiness to commit are de-
termined using non-repudiable messages in a dis-
tributed, cascading fashion as explained in section
4.

Next, we give a detailed description of the with-
drawal and purchase protocols.

3.1 Notation

We use the following notation to describe steps in a
protocol.

1. X =Y messagetext — label

Here, the step number of the message is given (this is
the first message in the protocol), the message is sent
from X to Y, the text of the message is messagetext,
and the step is named label.

126

Second Workshop on Electronic Commerce

USENIX Association

We use the notation (message), to indicate the
message is signed with public key p, and Ey(field)
to indicate that a field is encrypted with symmetric
key k.

3.2 Withdrawal and Exchange

The consumer generates a public key pair to use with
each withdrawal. The public half of the pair is used
to form blinded-request. The steps of the this proto-
col are given in Figurel. At the end of the protocol,
the consumer can form the token Q* by unblinding
signed-blinded-request. The contents of Q" specify
the public key @ (including modulus), whose private
half is known only to C.

A token may be anonymously exchanged for a
new token in a similar fashion by replacing the con-
sumer’s public key with the token’s single-use key.
The token exchange steps are given in Figure 2.

The following is an example protocol using a spe-
cific blinding technique. The bank has an RSA pub-
lic key pair with modulus N;, public exponent 3, and
private exponent t = 37! mod ¢(N,). The bank has
also made public a cryptographic hash function h.

1. C generates a desired public key pair @, ¢ with
modulus N, :

C selects a random number r mod NV,
1.C— B h(Q) r®mod N,

B computes (R(Q) - r3)t = h(Q)' - r mod N,
2. B> C h(Q) -rmod N,

C computes »~! mod N; and then h(Q)‘’ mod
N

7. C has Q* = @, (h(Q)* mod N;)

S T

The bank may use multiple signature keys for its
blind signature, corresponding to different brands of
tokens. The brand of a token determines its de-
nomination and its withdrawal date. Having token
brands is important for limiting the data logging re-
quirements for the bank: until a brand of blinded to-
ken is withdrawn from use, the bank must maintain
a database containing auditing information proving
that expended tokens have been spent in order to
prevent double spending (see Section 5). By a pri-
ori declaring that tokens will be worthless after the
brand withdrawal date, the bank limits its data log-
ging obligations; furthermore, brand withdrawal will
also limit risk, since it limits the amount of time at-
tackers will have to attack the key. Next, we discuss
how the blind-signed token obtained above is used
in the purchase protocol.

3.3 Purchase

Some negotiation of the transaction contract is as-
sumed to take place prior to the transaction steps
listed below. Given the current approach, the
method of this negotiation has no direct bearing
on the protocol. As above, cach message i1s anno-
tated with a mnemonic which describes the purpose
of the message, and which will be used to refer to
the message. For example, authorization denotes
the authorization action by the party identified in
the subscript. The protocol is an example of linear
commitment is the sense defined in [10}. The steps
of the purchace protocol are given in Figure 3.

In step 1, the merchant sends a signed copy of
the contract and goods to the consumer. It is es-
sential that the contract (contract) contain a de-
scription of the goods in order to provide one-sided
certified delivery. The goods (goods) are encrypted
with a single-use private key (k), referred to as the
merchandise key. The merchandise key will be re-
vealed to the log and the consumer if the transac-
tion commits. The message includes a transaction
number (n) generated by the merchant which should
be different from any previously generated transac-
tion number from the same merchant. A duplicate
number could be detrimental only to the merchant.
Upon receipt, the consumer verifies that the contract
is acceptable.

In step 2, the consumer decides upon an expi-
ration time (expiration) for the transaction, after
which the transaction is considered to have failed,
and the token can be reused or replaced. The con-
sumer also selects a transaction log (L) for the trans-
action. Both the bank and the merchant have effec-
tive veto power over the consumer’s selection of I
and expiration, since they will not provide autho-
rization before knowing these values. The consumer
then signals to the bank its readiness to commit by
specifying the transaction and the token and key to
be used (@*). The bank must verify the validity of
Q*, including a check against reuse. The bank then
uses @* to check the message’s signature.

In step 3, the bank tells the merchant that it and
the consumer are ready to commit, and includes in
the message the value of the token (value) to be used
for payment. The merchant verifies the transaction
number is correct and that the token value, log 1den-
tity, and expiration time are acceptable.

In step 4, the merchant commits to the transac-
tion by sending the merchandise keyto the log, along
with the time-out, transaction number, and a signa-
ture. Upon receipt, the log verifies that the expira-
tion time (expiration) has not passed.

USENIX Association

Second Workshop on Electronic Commerce

127

W1. C = B (blinded-request). — withdraw,

W2. B = C signed-blinded-request — withdraw,

Figure 1: Token withdrawal protocol.

El. C —» B Q*,(blinded-request), — withdraw,

E2. B —+ C signed-blinded-request — withdraw,

Figure 2: Token exchange protocol.

In step 1, the log records the merchant’s commit-
ment if it was received before expiration. The precise
method of distribution of the recorded message is not
important to determining atomicity properties, but
some method for providing timely, good-faith deliv-
ery to the consumer is of practical importance. Any
party can use this log record in conjunction with
other signed messages obtained during the transac-
tion to force the bank to transfer funds or to obtain
the goods decryption key, completing the transac-
tion.

In step 2, which may occur only after the
expiration, the log generates a negative authoriza-
tion at the request of the consumer or the bank.
This indicates that no 4 for the given merchant and
transaction number was received prior to the given
expiration time. This allows the token to be freed
for reuse or exchanged following a failed transaction;
after abort is generated, the purchase protocol ter-
minates.

4 Correctness and Atomicity

The atomicity properties of the protocol rest on
the atomicity of the transaction log’s non-repudiable
commit (or abort). The transaction log will eventu-
ally produce exactly one of commit or abort for any
transaction. The other parties can use this, along
with other data gathered during the course of the
transaction, to prove that the transaction did (or
did not) complete. Conversely, if a party claims that
the transaction did (or did not) complete, it must be
able to provide this proof to justify its claim to other
parties.

The transaction protocol follows the two-phase
commit model, however, the authorization actions of
the parties are cascaded. First, the consumer autho-
rizes the bank to lock the token to the transaction.
Next, the bank authorizes the merchant to transmit

the key to the log. Then, the merchant sends the
merchandise key to the log, authorizing the log to
commit the transaction. Finally, the log issues the
global commit. Accountability is similarly cascaded
so that a party can be held accountable exactly when
it has made an authorization and the transaction
commits. For example, if the bank authorized the
merchant to deposit the key (authorizationy) with-
out having received the consumer’s authorization to
lock the token (authorizationg), then the bank could
be held accountable by the merchant (who would
have commit and authorization,), but the consumer
could not be held accountable by the bank (which
would have commit but not authorizationg).

The merchant can use commit and authorization,
to prove that the bank should credit the merchant’s
account with the value of the token. This provides
the bank with commit. Possession of commit assures
the bank that it will not be subject to a claim that
the transaction has failed, since such a claim would
require abort.

The bank can use commit and authorization, to
justify (to the consumer) marking the token spent
and denying reuse or replacement. The consumer
can demand this proof, requiring the bank to pro-
duce commit, which contains the merchandise en-
cryption key, thus giving the consumer access to the
goods. Note that in practice, assuming good faith,
the consumer will acquire the key prior to this, and
demand of proof will not be necessary.

The consumer can use abort and ¢ to demand that
the token be unlocked. This provides the bank with
abort. Possession of abort assures the bank that
it will not be subject to a claim that the transac-
tion has completed, since such a claim would require
commit.

Finally, the consumer can use commit and goods,,,
to prove the contents of the delivered goods. The
goods encryption key, the encrypted goods, and the

128

Second Workshop on Electronic Commerce

USENIX Association

Pl. M = C (n,contract, Ex(goods))m — goods,,

P2. C — B (n,expiration, M, L, Q") — authorization,

P3. B — M (n,expiration, M, L, value), — authorization,

P4. M — L (n,expiration, k), — authorizationy, or

P5. 1. L
2. L

({n, expiration, k)pm); — commit

((n, expiration, M, failed); — abort

Figure 3: Purchase protocol.

description of goods (contained in the contract) have
all been signed by M, and commit proves that the
transaction completed. Some means for review of
goods by an outside authority should be available
to establish claims of incorrect or fraudulent goods
delivery.

From a correctness standpoint, it is important to
examine the use of combinations of signed, non-
repudiable messages employed above. Any given
commit (or abort) is valid for only one combination
of n, expiration, M, and L; it is considered to be
compatible only with the messages which agree on
those values. The one exception is that the certifi-
cate goods,, does not mention L or expiration, and
thus must agree only on n and M to be compati-
ble. At each step, a party provides a signed message
which can be used to prove that party’s accountabil-
ity with exactly the same range of commit messages
as it would use in proofs of the preceding party’s
accountability. Thus, if a party is held accountable
for the transaction, then it is provided with the non-
repudiable messages that it needs to hold the previ-
ous party accountable as well.

5 Data Management

Our protocols rely heavily on the ability of the par-
ticipants to hold each other accountable by main-
taining records of each other’s non-repudiable mes-
sages. We now discuss the record keeping required
of the different participants in the protocol.

The consumer stores all data and messages re-
ceived on all active tokens or transactions. This in-
cludes the token (Q*), the signed contract and goods
(goods,,), and finally the global commit (commit).
The consumer can use goods,, and commit to prove
the contents of the goods and the contract. If the
goods are satisfactory, then the consumer may dis-
card all data on the transaction.

The merchant stores the bank’s authoriza-
tion (authorization,) and then the global commit
(commit). These are used to prove a completed
transaction to the bank, which then issues a credit to
the merchant. Once the bank has issued the credit,
the merchant may discard all data on the transac-
tion.

The transaction log stores the merchant’s autho-
rization (authorization,,) whenever it produces a
global commit (commit). This information may be
discarded after some delay following the transaction
expiration (expiration). The delay should be long
enough that denial of access to the log for that du-
ration is extremely improbable. It is also important
that the log not generate abort for any transaction
with an expiration which has been exceeded by more
than this delay period.

The bank must maintain a variety of transaction
information to correctly manage the protocol. The
bank must have a selection of brands of tokens. The
brand of a token specifies the method used to create
the token as well as the properties (e.g. denomina-
tion) associated with the token. Different brands of
tokens are used to cover the range of desired token
properties, particularly denominations and expira-
tion dates. Since the bank knows the brand of the
blinded token withdrawn by a consumer, the denom-
inations and expiration dates should have a coarse
granularity so that many tokens of each brand are
issued. The bank must maintain a database of pro-
cessing information for each brand of tokens it issues.

The database for a brand of tokens tracks the
status of tokens of that brand. During the trans-
action phase, the bank receives an authorization
(authorizationg) to commit a token to a transac-
tion. This message is logged in the database, so
that attempts at token reuse can be detected. Once
the bank receives the the commit (commit) or abort
(abort) for a transaction, it stores that as well. If the
transaction completes, the bank should keep both

USENIX Association

Second Workshop on Electronic Commerce

129

authorization, and commit until some period follow-
ing the expiration for the brand of token used. If the
transaction aborts, the bank need keep only abort.
In order to limit the time the bank must store abort
records, transaction claims by the merchant should
have a limited time of validity, perhaps some fixed
period following expiration. This period should be
sufficiently long to allow time for reasonable delays
or for outside party conflict resolution. If the period
is based on expiration, then the bank may decide to
not authorize any transactions with excessively late
expiration values.

6 Privacy

An important consideration in any transaction is
what information is revealed about the participants
and to whom. In this section, with the aid of a table,
we detail what information is obtained by various
agents.

Table 1 gives the types of information available
to various parties in the style of [4]. The entries
for the merchant, the consumer, the bank, and the
transaction log are based on their original informa-
tion plus any information received over the course
of a transaction. The information for law enforce-
ment with warrant assumes record-keeping on the
part of the bank, and law enforcement’s knowledge
of the item is dependent on merchant records. The
electronic observer’s knowledge is based upon per-
forming traffic analysis on the encrypted messages.
In the basic protocol, the transaction log is publicly
readable, and thus an observer can also obtain full
information about the merchant’s identity.

7 Trust

In this section we discuss the assumptions of trust
necessary for our protocols. We then consider two
modifications based on alternative trust assump-
tions.

While there are many places where a dishonest
participant or saboteur could delay progress or pre-
vent commitment (e.g. by disrupting a communi-
cation channel), there is only one location where
a corrupt coalition may benefit illegitimately. For
this reason, there is one trust assumption required
by the protocol; the merchant must trust the log to
record received messages. If the log, in collusion with
the consumer, fails to produce commit, but simply
passes k (which is contained in authorization,,) to
the consumer, then the consumer will gain access to
the goods while the merchant will not have commit,

and thus will not be able to demand payment. In
practice, if the time to expiration is sufficiently long
and the log is accountable for responsiveness, this
sort of fraud might be detected. Trusted outside ob-
servers could notice that the log is failing to respond
in reasonable time and take some action.

This trust assumption against a log-consumer
coalition is a reason for the existence of the trans-
action log as a separate entity. Before he commits
to the transaction, the merchant knows the identity
of the log, and therefore he need only commit if the
specified log is trusted. In practice, the selection of
the log might be decided in the initial negotiation
between the consumer and merchant. If the mer-
chant is assumed to trust the bank not to conspire
with the consumer, the transaction protocol can be
simplified by merging the bank and the log.

The second reason for a separate transaction log is
the consumer’s desire for timely access to the goods.
From a practical standpoint, the consumer must
trust that the log will not intentionally delay pass-
ing the key to the consumer. Although the key must
eventually be revealed to the consumer for the bank
to justify crediting the transaction, this would likely
take place on a much larger time scale than would
be desirable for key delivery. If the log is required
to satisfy some responsiveness guarantees, then lim-
ited delays can be enforced with the assistance of a
trusted outside party. If theé consumer is assumed
to trust the merchant to make timely delivery of
the key (given that it must be delivered eventually),
then the transaction protocol can be simplified by
merging the merchant and the log.

8 Protocol Variations

The protocols presented in this paper form the
groundwork for many variations which alter or ex-
tend their functionality. In this section we describe
modifications to support key reuse, multiple token
transactions, partial token spending, cryptographic
time-stamps, a non-public transaction log, and full
certified delivery.

8.1 Reusable Customer Keys

One variant of these protocols permits reuse of @
at the expense of allowing the bank to link repeated
uses of Q: instead of blind signing A(Q), the bank
blind signs h(Q, s), where s is some serial number
chosen by the consumer. In this fashion, many to-
kens (Q* = @, s, h(Q,s)") can all specify the same
key (Q). Only the bank sees @ (in 4), and so only

130

Second Workshop on Electronic Commerce

USENIX Association

Information || Merchant | Consumer | Date] Amount | Item
Party
Merchant Full None Full Full Full
Consumer Full Full Full Full Full
Bank Full None Full Full None
Transaction Log Full None Full Noune | None
Law Enforcement
w/warrant Full None Full Full Fall
Electronic
Observer Partial None Full Partial | None

Table 1: Information Available with Anonymous Certified Delivery

the bank can link repeated uses of the same key to
each other.

8.2 Multiple Token Transactions

To pay for items of arbitrary values, we may need
to combine several tokens in a single transaction.
In this case 2 must contain the various tokens, and
be signed with all keys associated with those to-
kens. Let Q" be a list of tokens (possibly of different
brands) (@1, h(Q1)"),...,(@m, h{(Qm)'™) and let §
be the list of corresponding private halves gy, ..., ¢p,.
We extend the subscript notation to vectors to indi-
cate signing the plaintext with each private key in
the vector. The new 1 step would then be

1. C = B (n,expiration, M,L,@*)
authorization,

q

Multiple token transactions combine well with the
use of one key for many tokens as discussed above,
since this might reduce the number of signatures
needed.

8.3 Partial Token Spending

The protocols may also be changed to support
spending tokens in a check-like fashion. By includ-
ing a particular value in 1, a consumer can authorize
that only a part of a token’s value is spent. The re-
maining value of the token may be exchanged for
new tokens, or may be used in further purchases un-
til all the value is used. Partial spending of tokens is
compatible with both key reuse and multiple token
transactions,

8.4 Cryptographic Time-Stamps

An important function of the log is to time-stamp
the arrival of 4. The time-stamps used should

include clock time information, since transaction
authorization expiration will be in terms of real
time. In order to reduce the trust that the parties
must place in the log’s honesty, cryptographic time-
stamping [13] may also be employed. Cryptographic
time-stamping will give the additional property that
if the log is compromised, the log entries made prior
to the time of compromise may still be trusted.

8.5 Encrypted Log Entries

In order to facilitate anonymous key acquisition by
the consumer, the transaction log is publicly read-
able. While the logged message (commit) does not
contain sensitive information, it might be used to
determine the merchant’s identity. Extra privacy
could be supported by including a secret key (s) in
the purchase messages. In fact, if n is required to
be randomly selected and is sufficiently large, then n
could be used as this secret key. The logged message
would be encrypted using the secret key so that only
the parties of the transaction could read (commit).
To support efficient lookups, a function on known
data could be used to generate indices for log en-
tries (e.g. £,(M)).

For even greater privacy, the log could be left un-
aware of the secret key and simply time-stamp, sign,
and record any received messages (and their indices).
This would require a modification of the abort mes-
sage to indicate that no message with the given in-
dex was available at a specified time. Additionally,
expiration should be left in plaintext so that the log
can know not to publish messages with timestamps
greater than their expiration values.

8.6 Two-Sided Certified Delivery

The last and most intricate variation on the proto-
cols is the addition of support for two-way certified

USENIX Association

Second Workshop on Electronic Commerce

131

CD1. M = C (n, contract, Ex(goods)), — goods,,

CD2. C — M [goods,], —

goods,

CD3. C — B (n,expiration, M, L, Q*)q — authorization,

CD4. B - M (n,expiration, M, L, Q, value), — authorization,

CD5. M — L (n,expiration, Q, k)m — authorization,, or

CD6.CD1. L ((n,expiration, @, k)m)i — commit
CD2. L ((n,expiration, M, failed), — abort

Figure 4: Full Certified Delivery purchase protocol.

delivery, which is detailed in Figure 4. Our pro-
tocols provide one-sided certified delivery; only the
consumer can prove what goods were delivered. If
the burden of proof is expected to fall on the mer-
chant, then the purchase protocol can be changed
to provide full certified delivery at the cost of extra
complexity. First, we introduce the notation [M], to
indicate the signature of M with key 2 without the
plaintext, e.g., h(M)* mod N; for RSA signatures.
If we provide the merchant with @ and [goods,,],,
then the merchant will be able to prove what goods
were delivered to the holder of Q. The merchant
must additionally be able to prove that the holder
of @ is the consumer for whom the transaction was
processed. Qur purchase protocol for certified deliv-
ery follows:

The new step, 2, supplies the merchant with the
signature by ¢ of the goods description. The inclu-
sion of @ in 3 enables the merchant to link Q with
the payment to be received. The logging of @ in
CD1 associates @ with the completed transaction.
To increase the trustworthiness of this association in
case of corruption by one or more parties, the cryp-
tographic time-stamping variation described above
should be employed. In variants where @ may be
reused, the log entries should be encrypted to pre-
vent unassociated parties from linking the repeated
uses of (.

9 Conclusion

In this paper, we presented protocols for achieving
anonymous atomic transactions, answering an open
question[17].

As stated in the introduction, these protocols are
not being proposed for use in their current form.
Both efficiency concerns and legal concerns — por-
tions of the protocol may violate financial insti-
tution recordkeeping requirements on transactions

over $100 stipulated by the Money Laudering Act
(12 USC §1829) in the US — must be addressed be-
fore such a protocol can be used. But an existence
proof of an anonymous atomic protocol is an im-
portant step towards providing reliable, secure elec-
tronic commerce on the Internet, while maintain-
ing individual privacy. Our variant protocol designs
demonstrate the range of anonymous, ACID trans-
action available.

We hope that researchers and system designers
in the electronic commerce community will further
explore the technical feasibility of providing anony-
mous atomic electronic money transactions in real
systems. We believe that these are fascinating tech-
nical issues and that in some contexts anonymous
and reliable transactions will have important social
value.

References

(1] Andrea J. Borr. ‘Transaction monitoring in
Encompass: Reliable distributed transaction
processing. In Proceedings of the Very Large
Database Conference, pages 155-165, Septem-
ber 1981.

[2] Stefan Brands. An efficient off-line electronic
cash system based on the representation prob-
lem. Technical Report CS-R9323, Centrum
voor Wiskunde en Informatica, 1993.

[3] E. Brickell, P. Gemmell, and D. Kravitz.
Trustee-based tracing extensions to anonymous
cash and the making of anonymous change. In
Proceedings of the Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 457-
466, 1995.

[4] L. Jean Camp, Marvin Sirbu, and J. D. Ty-
gar. Token and notational money in electronic

132

Second Workshop on Electronic Commerce

USENIX Association

commerce. In Proceedings of the First USENIX
Workshop in Electronic Commerce, pages 1-12,
July 1995.

(5] D. Chaum, A. Fiat, and M. Naor. Untrace-
able electronic cash. In Advances in Cryptology
— CRYPTO '88 Proceedings, pages 200-212.
Springer-Verlag, 1990.

[6] David Chaum. Blind signatures for untraceable
payments. In Advances in Cryptology: Crypto
‘82 Proceedings, pages 188-293. Plenum Press,
1983.

[7] David Chaum. Security without identifi-
cation: Transaction systems to make big
brother obsolete. Communications of the ACM,
28(10):1030-1044, October 1985.

(8] Benjamin Cox. Maintaining prvacy in elec-
tronic transactions. Technical Report TR 1994-
9, Carnegie Mellon University Information Net-
working Institute, Pittsburgh, PA, September
1994.

[9] C. J. Date. An Introduction to Database Sys-
tems Volume 2. Addison-Wesley, Reading, MA,
1983.

[10] J. Gray and A. Reuter. Transaction Processing.
Morgan-Kauffman, 1993.

[11] James N. Gray. A transaction model. Technical
Report RJ2895, IBM Research Laboratory, San
Jose, California, August 1980.

(12] James N. Gray. The transaction concept:
Virtues and limitations. In Proceedings of the
Very Large Database Conference, pages 144—
154, September 1981.

(13] Haber and Stornetta. How to time-stamp a
digital document. Journal of Cryptology, 3(2),
1991.

(14] M. Jakobsson. Ripping coins for a fair ex-
change. In Louis C. Guillou and Jean-Jacques
Quisquater, editors, Advances in Cryptology:
Eurocrypt 95 Proceedings, volume 921 of Lecture
Notes in Computer Science. Springer-Verlag,

1995.

[15] Steven Low, Nicholas F. Maxemchuk, and San-
Joy Paul. Anonymous credit cards. Technical
report, AT&T Bell Laboratories, 1993. Submit-
ted to IEEE Symposium on Security and Pri-
vacy, 1993.

(16] Bruce Schneier. Applied Cryptography, 2nd edi-
tion. John Wiley and Sons, 1996.

[17] J. D. Tygar. Atomicity in electronic commerce.
In Proceedings of the Fifteenth Annual ACM
Sympostum on Principles of Distributed Com-
puting, pages 8-26, May 1996.

[18] Bennet S. Yee. Using Secure Coprocessors. PhD
thesis, Carnegie Mellon University, 1994.

USENIX Association Second Workshop on Electronic Commerce

133

