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Abstract

Consider the problem of transparently recovering an
asynchronous distributed computation when one or more
processes fail. Basing rollback recovery on optimistic
message loggingand replay is desirable for several reasons,
including not requiring synchronization between processes
during failure-free operation. However, previous optimistic
rollback recovery protocols either have required synchro-
nization during recovery, or have permitted a failure at
one process to potentially trigger an exponential number of
process rollbacks. In this paper, we present an optimistic
rollback recovery protocol that provides completely asyn-
chronous recovery, while also reducing the number of times
a process must roll back in response to a failure to at most
one. This protocol is based on comparing timestampvectors
across multiple levels of partial order time.

1. Introduction

1.1. The Problem

Consider a long-running application program on an asyn-
chronous distributed system. If a process p fails and then
recovers by rolling back to a previous state, process p’s
computation since it first passed through the restored state
has become lost. The failure and rollback of p may cause
the state at a surviving process to become an orphan — a
state that causally depends on lost computation— and the
existence of orphan states causes the system state to be in-
consistent. The challenge of rollback recovery is to restore
and maintain a consistent system state when one or more
processes fail and roll back.
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One desirable property of a rollback recovery protocol
is the ability to perform recovery transparently to the appli-
cation program. Another desirable property is minimizing
the amount of computation wasted due to rollback, such as
the number of surviving processes that must roll back, the
number of times each process must roll back, or the amount
of rolled-back computation beyond that which causally de-
pends on the computation lost due the failure; an extreme
case of such wasted computation is the domino effect [22,
24]. A third desirable property is minimizing the overhead
incurred by the protocol, both during failure-free execu-
tion and during recovery. During failure-free execution,
synchronization between processes slows down the appli-
cation program; during recovery, synchronization between
processes slows down recovery and may prevent recovery
from concurrent failures from proceeding concurrently.

Optimally, surviving processes roll back at most once,
and only roll back the portion of their own computation
that has become an orphan. In this paper, we present a
protocol that provides this property, while also providing
complete asynchrony. Processes do not synchronize with
each other during failure-free execution or during recov-
ery, and processes record all recovery information during
failure-free operation (logged messages and checkpoints)
on stable storage asynchronously.

1.2. Optimistic Message Logging

Our protocol is based on optimistic message logging.
In the general message logging approach to recovery,

processes log their received messages and occasionally
checkpoint their local state. A process may recover to any
past state by restarting from an earlier checkpoint and then
replaying from the log the sequence of messages it originally
received after that checkpoint. Message logging assumes
that the execution of each process is piecewise determinis-
tic1 [30] This scheme can also be extended to handle some

1That is, execution between successive received messages is completely
determined by the process state before the first of these messages is received
and by contents of that message. After receiving a message, a process
performs a sequence of deterministic state transitions, some of which may
involve sending messages to other processes. The process then attempts to
receive another message, and blocks until one is available.
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nondeterminism [9, 14] by treating each nondeterministic
influence as a message, logging it and replaying it during
recovery.

The message logging approach allows states of a process
in addition to those saved in a checkpoint to be recovered.
Recovery protocols based instead on checkpointing without
message logging (e.g., [1, 5, 6, 7, 8, 15, 16, 17, 31]) can re-
cover only process states that have been checkpointed, often
forcing processes to roll back further than otherwise re-
quired after a failure. Message logging allows each process
to be checkpointed less frequently, and may in general re-
duce failure-free overhead since logging a message is less
expensive than recording a checkpoint. Message logging
also avoids the need for process synchronization during
checkpointing.

Optimistic message logging protocols (e.g., [12, 13, 14,
20, 25, 30]) buffer received messages in volatile storage
and log them to stable storage asynchronously in order to
avoid blocking the process due to logging. Unlike pes-
simistic message logging protocols (e.g., [3, 4, 9, 11, 21]),
optimistic protocols allow a process to receive a message
and to continue execution before the message is logged to
stable storage. Since a failed process that has not yet logged
some received messages may not be able to restore its last
state before failure, this failure may cause other processes
to become orphans. In order to restore the system to a
consistent state, an optimistic recovery protocol must be
able to detect and eliminate orphans throughout the system.
Although optimism thus complicates recovery, optimistic
rollback protocols are potentially cheaper during failure-
free operation due to their asynchronous operation. By
also using asynchronous checkpointing techniques [8, 17],
all causes of process blocking due to fault tolerance during
failure-free operation may be avoided.

1.3. Asynchronous Recovery

Existing optimistic rollback protocols have required syn-
chronization between processes during recovery, in order to
ensure that the system recovers to a consistent state and that
the system state remains consistent in spite of the effects
of any orphan processes or messages remaining after the
failure.

Strom and Yemini [30] initiated the area of optimistic
rollback recovery and presented the most asynchronous pro-
tocol prior to the completely asynchronous protocol that we
present in this paper. In the Strom and Yemini protocol,
processes use timestamp vectors to track dependency. When
a process rolls back, it begins a new incarnation and sends
announcements to the other processes. (These announce-
ment messages are not part of the failure-free computation,
and thus do not carry dependency.) When a process receives
a rollback announcement, it uses its timestamp vector to de-
termine if its current state is an an orphan; if so, this process

rolls back to its maximal state that it believes is not an
orphan: the process restarts from an old checkpoint and
replays from the log its received messages until it reaches
one known to be an orphan based on the incarnation start
information contained in the rollback announcements it has
received.

The Strom and Yemini protocol usually requires no
process synchronization during recovery, but may in some
cases need to block a process. Processes need the incarna-
tion start information from rollback announcements in order
to compare timestamp vectors received on messages. (Oth-
erwise, when a message from a new incarnation arrives, a
process does not know whether to accept and continue, or
to roll back.) If an announcement is delayed, any process
that has not yet received the announcement may be forced to
block when it needs to make a timestamp vector comparison.
This behavior can occur even though the protocol assumes
FIFO message ordering between each pair of processes,
since a timestamp vector entry referring to the new incarna-
tion may arrive at this process indirectly through a chain of
messages.

In addition, the asynchrony present in the Strom and
Yemini protocol can permit a single failure at one process
to cause other processes to roll back an exponential num-
ber of times. This behavior occurs because an orphan state
at a surviving process r may depend on the lost compu-
tation at another process through multiple paths: directly
from the failed process, and indirectly through intermediate
processes. The protocol may generate rollback announce-
ments in such a way that process r rolls back in response
to the rollbacks of intermediate processes, and then in re-
sponse to the rollback of the failed process. Figure 1 shows
a simple scenario in which process r rolls back twice in re-
sponse to a single failure at process p. Sistla and Welch [25]
claim an upper bound of O�2n� rollbacks in the worst case
for the Strom and Yemini protocol, where n is the number
of processes in the system. In [27], we construct an explicit
example showing 2n�1 rollbacks, and thus establish a tight
bound Θ�2n� for the worst case.

1.4. Our Results

In this paper, we present a new protocol for optimistic roll-
back recovery. Much previous work in optimistic recovery
has modeled the application program with partial order time,
and used the standard technique of timestamp vectors [10,
18, 30] to track causal dependency. Our work exploits the
insight that the transparent recovery protocol itself is also
an asynchronous distributed computation. This recovery
computation can also modeled by a partial order — but one
that differs from the partial order for the user application
computation. Our protocol maintains vector clocks for both
levels; comparing vectors across time levels optimally char-
acterizes when a given state is an orphan.
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Figure 1 In this example of how the Strom and Yemini pro-
tocol may cause surviving processes to roll back multiple
times in response to a single failure, one failure at process p
causes process r to roll back twice. Process p fails and rolls
back state interval B, making state intervals G and N or-
phans. When q receives p’s announcement about B, q rolls
back to its most recent state that does not depend on B, but
q’s announcement may arrive at r before p’s announcement
does. Process r does not know that its restored state is still
an orphan until after p announcement also arrives. (An “X”
marks each rolled-back interval.)

Our new protocol improves on previous optimistic roll-
back protocols by requiring no synchronization during re-
covery. In comparison specifically to the Strom and Yemini
protocol (which otherwise requires the least synchroniza-
tion during recovery), our protocol reduces the worst case
number of rollbacks per process after any failure from ex-
ponential to one, and requires neither FIFO messages nor
blocking of any process. Our protocol also does not require
the sending of any messages other than those sent by the ap-
plication program. The principal drawback of our protocol
is timestamp size, since the protocol requires vector clocks
for two levels of partial order time. Table 1 compares our
protocol to four principal optimistic message logging pro-
tocols (discussed further in Section 5).

2. Theoretical Basis

2.1. Definitions

Two Levels of Computation Besides performing the ap-
plication program, processes also perform recovery. We
formalize this duality by discussing two distributed compu-
tations:

� the user application computation, and

� the system recovery computation.

The system process at p implements the user process (but
the system process is transparent to the user process). The
system state at process p consists of the user state plus
some extra state. All user messages are carried by system
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Table 1 Summary of comparison to previous work.

messages, but some messages may be exclusively system-
only. Only user messages are logged.

State Intervals A state interval is a period of determin-
istic execution at a process. In our model, each process
has a current system state interval and a current user state
interval. A process begins a new system state interval at
each occurrence of any of three events: the system process
receives a new system-level message; the user process re-
ceives a new user-level message; or the system process rolls
back the user process. A process begins a new user state
interval each time the user process receives a new user-level
message. Rollback restores an old user state interval.

Each state interval at a process has a state interval index.
We use capital Roman letters to denote state interval indices,
and use subscripts to indicate whether the interval is from
the system level or from the user level. For example, AS
denotes a system state interval index, andBU denotes a user
state interval index.

At each process, the system state interval indices form a
timeline: a linear sequence. The user state interval indices,
on the other hand, form a timetree, since each rollback be-
gins a new branch. Figure 2 illustrates this branching. We
use �S and �U to indicate comparison on system state
interval indices and user state interval indices, respectively.
(These comparisons are valid only for intervals within a
single process.)

Relating System State to User State Since (at each
process) a new system state interval begins whenever a new
user state interval begins, a given system state interval is
associated with exactly one user state interval.

We can use this association to compare system state in-
terval indices to user state interval indices. We denote this
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Figure 2 Rollback places the user state interval indices at
a process into a timetree. Here, process p executes user
state interval AU , then BU , then rolls back to AU , then exe-
cutes CU .

comparison by �� . For any state interval indices AU and
BS , we defineAU �� BS to hold if and only ifAU �U BU ,
whereBU is the user state interval index associated withBS.

We also introduce functions to make this association ex-
plicit. Let SYS TO USR map each system state interval to
its user state interval, and let USR TO SYS map each user
state interval to its set of system state intervals.

Vectors of Indices A vector is an array of state interval
indices, one for each process. For a vector X, X�p� denotes
the process p entry of X. We use the �S , �U , and
�� comparisons on state interval indices to define entry-
wise comparisons on vectors of state interval indices. We
also use the �S and �U comparisons to define the entry-
wise vector maximizations MAXS and MAXU , respectively.
However, since user state interval indices form a tree, it is
possible that two user state interval indices at a process may
be incomparable. (For example, in Figure 2, BU and CU
are incomparable.) MAXU is undefined for such inputs.

Rollback Suppose user state intervalAU and system state
interval BS both occur at process p. We say that BS rolls
back AU when BS is the state interval that process p started
when it began rolling back during recovery, and AU was
one of the user state intervals rolled back. Since process
p can only roll back something that has already happened,
any AS � USR TO SYS�AU � satisfies AS �S BS .

Two Partial Orders We build abstract partial order time
models for the two levels of computation in our system. We
obtain these partial orders by constructing directed acyclic
graphs whose nodes represent state interval indices and
whose edges represent precedence.

For the system computation, we construct a node for each
system state interval index. Let AS and BS be distinct state
interval indices. We draw an edge from AS to BS when
AS �S BS , or when AS sends a message that initiates BS .
We say that AS precedes BS in the system partial order
when a path exists fromAS toBS in this graph. For the user
computation, we construct a node for each user state interval
index. Let AU andBU be distinct state interval indices. We
draw an edge from AU to BU when AU �U BU , or when

AU sends a message that initiates BU . We say that AU
precedes BU in the user partial order when a path exists
from AU to BU in this graph. We use �� to indicate
precedence in these partial orders, and �� to indicate
precedence or equality. Which partial order should be clear
from the subscripts on the variable names. (Note that unlike
the �U and �S relations, these partial orders may relate
intervals at different processes.)

The fact that rollback places the user state interval in-
dices at a process into a tree permits some pathological
situations. To restrict these situations, we say that a user
state interval AU is valid when its past in the user partial
order touches only one root-leaf path in the timetree at any
process. For example, consider Figure 2; any user state
interval DU (at any process) that satisfied BU ��DU and
CU ��DU would not be valid.

Timestamp Vectors Timestamp vectors [10, 18] are a
well-known technique for tracking partial order time re-
lations. The timestamp vector for a state intervalA consists
of, for each process q, the maximal interval at q that precedes
or equals A in the partial order. Comparing the timestamp
vectors for two state interval indices determines their partial
order relation.

This property applies to both partial orders we construct.
Suppose system state intervals AS and BS have timestamp
vectors XS and YS , respectively. Then AS �� BS if
and only if XS �S YS . Similarly, suppose valid user state
intervals AU and BU have timestamp vectors XU and YU ,
respectively. Then AU �� BU if and only ifXU �U YU .

In particular, if XS is the timestamp vector for system
state intervalBS, then a system state intervalAS at a process
p satisfies AS �� BS if and only if AS �S XS �p�. Sim-
ilarly, if XU is the timestamp vector for valid user state
interval BU , then a user state interval AU at a process p
satisfies AU �� BU if and only if AU �U XU �p�.

2.2. The Orphan Comparison
Potential Knowledge Suppose AU is a user state interval
at process p. When can another process potentiallybe aware
that AU is an orphan?

We define a predicate KNOWABLE ORPHAN�AU � BS�
that is true when AU is an orphan or has been rolled back,
and process q during system state intervalBS can potentially
be aware of this fact. For the predicate to be defined, process
q must be aware of AU ; hence we require the precondition
that AS �� BS for some AS � USR TO SYS�AU �. For
the predicate to be true, there must exist a user state interval
CU and a system state interval DS satisfying three condi-
tions: first, CU �� AU ; second, DS rolls back CU ; and
third, DS

�� BS . The first two conditions are necessary
for AU to no longer be part of the valid computation. The
last condition is necessary for process q to be potentially
aware of this fact at BS .



An Optimal Test Comparing timestamp vectors across
the two levels of partial order time exactly captures this
potential knowledge.

Theorem 1 Suppose user state intervalAU at process
p and system state interval BS at process q satisfy
AS ��BS , for some AS in USR TO SYS�AU �. Let
XU be the user timestamp vector of AU , and let
YS be the system timestamp vector of BS . Then
KNOWABLE ORPHAN�AU � BS� is true if and only
if XU ���

YS .

Before proving this theorem, we establish two lemmas.

Lemma 1 Suppose BS rolls back AU . If AS �
USR TO SYS�AU � then AS �S BS . If CS satisfies
BS �S CS, then AU ��U SYS TO USR�CS�.

Proof Rolled-back states remain rolled-back, and we can
only roll back states that have happened.

Lemma 2 Suppose user state intervalAU and system
state intervalBS satisfyAU �� SYS TO USR�BS �.
Let AS be the minimal interval in USR TO SYS�AU �.
Then AS �� BS .

Proof We establish this result by induction: If AU and
SYS TO USR�BS � occur at the same process, this is easily
true. IfAU sends a message that begins SYS TO USR�BS�,
then some interval in USR TO SYS�AU � precedes BS ,
so clearly AS must also. For more general prece-
dence paths, choose an intermediate node CU with
AU ��CU �� SYS TO USR�BS �, and choose the min-
imal CS from USR TO SYS�CU �. Establish the re-
sult for AU and SYS TO USR�CS�, and for CU and
SYS TO USR�BS �.

Proof (of Theorem 1) Suppose for user state interval
AU at process p and system state interval BS at process
q, that KNOWABLE ORPHAN�AU � BS� holds. Then at
some process r, there exists a user state interval CU and
system state interval DS satisfying the statements: (1)
CU �� AU , (2)DS rolls back CU , and (3) DS �� BS .
Statement (1) implies that CU �U XU �r�. Statement (2)
and Lemma 1 imply that CU ��U SYS TO USR�ES� for
any ES satisfying DS �S ES. Statement (3) implies that
DS �S YS �r�. Hence CU ��U SYS TO USR�YS �r��, and
thus XU ���

YS .
Conversely, suppose XU ���

YS . Then there ex-
ists a process r with XU �r� ��U SYS TO USR�YS �r��.
Let CU � XU �r�; let CS be the minimal state in-
terval in USR TO SYS�CU �. By the definition of
a timestamp vector, CU �� AU . By Lemma 2
and hypothesis, CS �� BS , and thus CS �S YS �r�.
Since by hypothesis CU ��U SYS TO USR�YS �r�� a DS
must exist such that CS �S DS �S YS �r� and DS rolls

back CU . Consequently, DS �� BS , and hence
KNOWABLE ORPHAN�AU � BS�.

3. The Protocol

Our protocol tests for orphans by comparing timestamp
vectors across two levels of partial order time [26, 27].
Section 3.1 presents our protocol in terms of system and
user state interval indices, functions to compare them, and
functions to generate new indices. Section 3.2 presents
some approaches to implementing these functions.

3.1. Functions

Each process maintains timestamp vectors VS and VU for
the system and user computations, respectively. At process
p, the p entries of these vectors are its current state interval
indices.

Sending Messages Figure 3 shows how messages are
sent. To send a system-level message, a process p sends
its own name, the message text, and the timestamp vector
of the current system state interval. To send a user-level
message, a process p sends a system-level message whose
text contains two items: the user message text, and the
timestamp vector of the current user state interval.

Receiving a System-level Message Figure 4 shows how
processes receive system-level messages.2 Process p first
uses the timestamp vector on the message to update the sys-
tem timestamp vector at p. Process p then begins a new
system state interval and asynchronously logs the times-
tamp vector of the new interval. (Only the maximum sys-
tem timestamp vector from each process need be retained
on stable storage.) The updated system timestamp vector
gives process p new information about the recovery activ-
ity of other processes. Process p compares its current user
timestamp vector to its new system timestamp vector to de-
termine if this new information indicates that the user state
at p is now an orphan. If so, process p calls ROLL BACK
to roll itself back to its most recent non-orphan user state
interval. In any case, RECEIVE SYS at process p returns
the source of the system message and the message text.

RECEIVE SYS uses the NEW SYS INDEX func-
tion to generate new system state interval indices.
NEW SYS INDEX�AS � BU� returns a system state inter-
val index that immediately follows AS , and whose unique
user state interval is BU .

2The assumption of piecewise determinism requires user-level processes
to perform blocking receives, and for clarity of presentation, we have also
assumed that system-level processes perform blocking receives. However,
we could obtain increased performanceby having the system-level process
perform interrupt-driven receives; the system process would maintain a
buffer of messages for the user process, and on each VS update could
re-examine the buffer for orphans.



/* process p sends a system message to process q */
procedure SEND SYS �MS� q�

send �p�MS�VS� to process q

/* process p sends a user message to process q */
procedure SEND USR �MU � q�

SEND SYS��MU �VU�� q�

Figure 3 Sending system and user messages.

Rollback Figure 5 shows the ROLL BACK procedure, in
which a process p restores its most recent available user
state interval that is not an orphan. If p has failed and lost
volatile storage, then the most recent user state intervals
may not be available.

As with RECEIVE SYS, process p determines orphans
by comparing a user timestamp vector to the current sys-
tem timestamp vector. Process p first obtains its most
recent checkpointed user state interval that is not an or-
phan. Process p then replays its received messages logged
after this checkpoint was recorded, until a message is
reached whose send is an orphan. Process p discards any
orphan checkpoints and logged messages, and begins a
new system state interval. The discarding of orphan log
data must be completed before any new data is logged.3

ROLL BACK also uses the NEW INCARNATION func-
tion to generate new system state interval indices. The
NEW INCARNATION�AS � BU � function returns a system
state index BS whose user state is BU . BS follows AS
immediately — and also follows all other state intervals that
have already occurred. (This is necessary since the process

/* process p receives a system message */
function RECEIVE SYS

wait until �q�MS� XS� arrives

/* update system timestamp vector */
VS�MAXS�VS�XS�

/* begin new system state interval */
VS �p��NEW SYS INDEX�VS�p��VU �p��
asynchronously log VS to stable storage

/* check if p is an orphan */
if VU ���

VS then ROLL BACK

return �q�MS�

Figure 4 Receiving a system-level message.

3Old logged messages and checkpoints may also be discarded when no
longer necessary for recovery from any possible future failure [13, 30].

/* process p rolls back to most recent non-orphan */
procedure ROLL BACK

/* restore maximal non-orphan user state */
find most recent checkpoint �C�XU � with XU �� VS
discard the checkpoints that follow this one

restore the user state to C

find first logged message �MU � YU � following XU �p�
while YU �� VS

replay the receive of messageMU

VU�YU
get next �MU � YU �

discard remaining logged messages

/* begin new system interval */
VS�p��NEW INCARNATION�VS �p��VU �p��
write VS to stable storage before proceeding

return

Figure 5 The rollback procedure for process p.

may have proceeded beyond AS , but lost this information
due to failure.)

Receiving a User-level Message Figure 6 shows how
processes receive user-level messages. When receiving a
user-level message, a process p waits for a system-level
message that carries a user-level message whose send is not
an orphan (according to p’s current information). Process
p then uses the user timestamp vector on the user message
to update the user timestamp vector at p.4 Process p then
begins a new user state interval and a new system state
interval.

RECEIVE USR uses the NEW USR INDEX func-
tion to generate new user state interval indices. The
NEW USR INDEX�AS � BU � function returns a user state
interval index that immediately follows BU , in the context
of the system state interval index AS .

Recovering from Failure For process p to recover from
its own failure, it simply reloads the current system times-
tamp vector from stable storage into VS , and then calls
ROLL BACK.

How quickly the system recovers from process failure
depends on how quickly the processes whose user state in-
tervals are orphans (or will become orphans) learn of the
failure. Our protocol allows a range of alternatives, from

4Theorem 1 establishes that this MAXU comparison is always well-defined.
Suppose process p were to accept a user message with user timestamp
vector XU , and for some q, XU �q� and VU �q� were incomparable under
�U . Then eitherXU �q� had been rolled back by the time VU �q� occurred
(so processpwould have discarded the message), or VU �q� had been rolled
back by the timeXU �q� had occurred (so processpwould have rolled itself
back).



/* process p receives a user message */
function RECEIVE USR

/* loop until a user message whose send */
/* was not a knowable orphan is available */
DONE�false
while �DONE

�q�MS��RECEIVE SYS

/* if MU carries a user message, process it */
if MS has format �MU �XU �
then

/* check if the send is an orphan */
if �XU �� VS�
then

/* the send is not an orphan */
DONE�true /* we can acceptMU */

else optionally inform process q

/* formally receive user messageMU */
/* update user timetamp vector */
VU�MAXU �XU �VU �

/* begin new user and system state intervals */
VU �p��NEW USR INDEX�VS �p��VU �p��
VS �p��NEW SYS INDEX�VS�p��VU �p��
asynchronously log �MU �VU � and VS to stable storage

return �q�MU �

Figure 6 Receiving a user-level message.

unreliable broadcast of system-only messages, to percola-
tion via the system timestamp data on user messages. Find-
ing good heuristics here depends on the communications
patterns of the computation.

An Example Figures 7 and 8 illustrate how our protocol
avoids the multiple rollback problem of Figure 1.

3.2. Implementation Considerations

Our new protocol requires a way to represent user and sys-
tem state indices, to compare these representations under the
�U , �S and �� functions, and to generate new indices.
This section provides one possible solution.

System Indices The system state interval indices should
reflect the timeline structure of the system state intervals,
but must also take into account the fact that a failed process
may lose all state. The system index should also indicate
the index of the corresponding user state interval. Follow-
ing [30], we say that each rollback of a process begins a
new incarnation of that process. We represent the index for
system state interval AS as a triple �k�m�AU�. Integer k
represents the incarnation in which AS occurs; integer m
represents the sequence of AS within that incarnation, and
index AU indicates the user interval corresponding to AS .

p:

r:

failure

q:

VS at OS

AS
BS ES

FS GS JS

KS LS NS

CS DS

HS IS

OS

Figure 7 Our protocol avoids the multiple rollbacks that
the Strom and Yemini protocol permits. This diagram shows
the system partial order for a scenario like Figure 1. Here,
process p fails, rolls itself back, and announces this fact
to process q, which rolls itself back and announces this
fact to process r. (Dashed arrows indicate system-only
messages).

This format supports our index generation func-
tions. Let AS be a system state interval with index
�k�m�AU�. NEW SYS INDEX�AS � BU � returns an index
�k�m � 1� BU �. NEW INCARNATION�AS � BU � returns
�k�� 0� BU�, where k� is one greater than the incarnation
count at stable storage. This format also directly supports
the �S and �� comparisons. For �S , we just lexico-

p:

r:

q:

AU BU

user version
of VS at OS

EU

FU GU JU

LU NUKU

VU at LU

Figure 8 Unlike the Strom and Yemini protocol, our proto-
col causes process r to roll back far enough the first time.
This diagram shows the user partial order, and demonstrates
how our orphan test achieves this result. The dark band
shows the user timestamp vector of user state interval LU ;
the light band shows the user version of the system times-
tamp vector of system state interval OS. Since the dark
band does not precede the light band at process p, process
r knows at OS that LU is an orphan.



graphically compare the first two entries in the indices for
two intervals. For �� , we extract the the third entry of the
system index, and use �U (defined below).

User Indices In order to reflect the timetree structure of
the user state intervals, we can use a representation for user
state interval indices that indicates the position of a user state
interval within the timetree. With every user interval, we
associate two integers: the depth of the interval within the
timetree, and the system incarnation in which this interval
first started. (The incarnation changes only when rollback
occurs.) We represent the index of a user state intervalAU as
a triple �i� j� S�. Integer i is the depth of AU , integer j is its
incarnation, and set S contains integer pairs indicating the
depth and incarnation of all BU satisfying two conditions:

1. BU �U AU

2. Either BU has an incarnation different from its parent
in the timetree, or BU the root of the timetree.

By specifying each branch, this set determines the path from
the root of the timetree to AU .

This index format provides straightforward support for
the �U comparison. Suppose user intervals AU and BU
have indices �iA� jA� SA� and �iB � jB� SB�, respectively.
To evaluate whetherAU �U BU , we determine first if iA �
iB , and then if SA � SB .

This index format also provides a straightforward way to
generate new indices. Suppose system state intervalAS has
incarnation and sequence numbers k and m, respectively;
suppose user state interval BU has index �i� j� S�. If k � j,
NEW USR INDEX�AS � BU � returns �i�1� k� S�; if k �� j,
NEW USR INDEX�AS � BU � returns �i � 1� k� S � f�i �
1� k�g�.

Reducing the Size of User Indices The size of the set in
the index of a user intervalAU is proportional to the number
of rollbacks in the path from the root to AU . If failures
occur, this will not be constant; thus, for these indices, the
size of user timestamp vectors willnot be linear. Instead, the
size will be proportional to the number of rollbacks in the
system-past of the intervals recorded in the vector entries.
(However, the number of vector entries will still be linear.)

We can reduce the amortized length of user indices by
having processes avoid transmitting redundant data. One
approach is to use a simple compression mechanism to ab-
breviate redundant byte sequences in the representation of
timestamp vectors sent on a message. Another approach is
to specify user index paths from intermediate nodes instead
of from the root. Suppose process pwants to send the index
of AU to process q. Instead of sending the path from the
root to AU , process p can send the path from an intermedi-
ate interval BU to AU . If process q already knows the path
from the root toBU , then process q quickly reconstructs the
full path. If not, process q recognizes that it is missing data
and can request it of process p.

One example of this amortization technique is using a
heuristic similar to Strom and Yemini’s approach. Each
time a process rolls back, it broadcasts the path to that roll-
back node along with its new incarnation count. Subsequent
user indices consist solely of the system incarnation count
and the position of the user interval within that incarnation.
(This heuristic introduces blocking into our protocol, but
still maintains the at-most-once upper bound on rollbacks
at a process.) However, a wide range of other heuristics
exists for this technique. At one extreme, process p trans-
mits only the end of the path; at the other extreme, process p
maintains the most recent system timestamp vector received
from q, and uses the q entry as the intermediate node for a
name sent to q. Commitment and garbage collection may
integrate nicely with these amortization techniques, since
processes may maintain a log vector of the maximal known
logged nodes at other processes.

4. Properties of the Protocol

Our new protocol is the first optimistic rollback protocol to
implement completely asynchronous recovery. We discuss
the advantages.

Suppose a process p fails and rolls itself back. A sur-
viving process q will roll back its own user state when this
state fails the �� comparison in RECEIVE SYS. Hence:

� Complete Asynchrony When a process must roll
back, it can roll back immediately and resume com-
putation without additional synchronization with other
processes.

Theorem 1 shows that surviving process q will roll back
its user state when this state becomes a knowable orphan:
when it depends on a rolled back state, and a knowledge
path exists from the rollback to q. Because of message
logging, a surviving process can always restore its maximal
non-orphan state, so the orphans created by a process failure
are exactly the state intervals that depend on the computa-
tion lost at the failed process. Because processes test user
messages before receiving them, the state at process q never
becomes an orphan due to the failure at p once a knowledge
path is established. Hence:

� Maximal Recovery Like other optimistic rollback
protocols, ours guarantees that a state is rolled back if
and only if it causally depends on the computation lost
at failed processes.

� Minimal Rollbacks Our protocol also guarantees that
a failure at process p causes a process q to roll back at
most once. Processes that do not depend on the failure
will not roll back at all.

� Speedy Recovery Suppose process q must roll back
because of a failure at process p. Process q will roll
back as soon as any knowledge path is established from
p’s rollback.



� Toleration of Network Partitions Another side-
effect of our asynchronous approach is that once
initiated, recovery can proceed despite a partitioned
network. The only processes that need to worry about
recovery are those that may causally depend on lost
states. Since each such process can recover asyn-
chronously, the processes on the same side of the parti-
tion as the failure can recover immediately. Processes
on the other side that need to recover can do so when
the network is reunited. The remaining processes on
either side may proceed unhindered. (However, this
paper does not address the problem of detecting failure
in a partitioned network.)

The preceding discussion considered the failure of a single
process. Using the �� test allows a surviving process to
roll itself back to the maximal state that is not an orphan due
to any rollback within the survivor’s knowledge horizon.
Hence our protocol provides:

� Concurrent Recovery Recovery from a process fail-
ure occurs as information about the failure propagates.
Basing recovery on information flow rather than coordi-
nated rounds directly allows recovery from concurrent
failures to proceed concurrently: the recoveries merge
and the protocol restores the maximum recoverable sys-
tem state. (In particular, two processes that each need
to roll back due to two failures do not need to react to
the failures in the same order.)

This protocol arose out of research into the security and
privacy aspects of partial order time [28, 23]. Coupling this
protocol with a fully secure implementation of partial order
clocks [29] would yield a recovery protocol that tolerates
not only faults, but also malicious acts of espionage and
sabotage.

5. Comparison to Related Work

Strom and Yemini [30] initiated the area of optimistic roll-
back recovery. They presented optimistic techniques for
surviving processes to ensure complete recoverability, and
a rollback protocol5 that allows processes to recover mostly
asynchronously, although delayed transmission of incarna-
tion start information may cause blocking. Strom and Yem-
ini’s protocol uses an orphan test that is strictly weaker than
ours. Their protocol never falsely concludes that a non-
orphan state is an orphan. However, their protocol will
falsely conclude that some orphan states are not orphans —
even when the testing process could potentially know oth-
erwise. These false negatives make it possible for a single
failure at one process to cause another process to roll back an

5In somesense, Merlin andRandell [19] foreshadowedStrom andYemini’s
work by presenting a protocol based on a representation similar to Petri
Nets; this protocol could be transformed and optimized into one similar to
Strom and Yemini’s.

exponential number of times, since the unfortunate process
never rolls back far enough (until the last time).

Johnson and Zwaenepoel [12, 13] developed a general
model for optimistic rollback recovery. They used state lat-
tices from partial order time to show that a maximal recov-
erable system state exists, and presented synchronized pro-
tocols to recover this state — even without reliable message
delivery. Sistla and Welch [25] presented two protocols for
optimistic recovery that avoid the exponential worst case by
using synchronization between processes during recovery;
like Strom and Yemini, Sistla and Welch require reliable
FIFO message channels. Peterson and Kearns [20] recently
presented a recovery protocol using vector clocks that syn-
chronizes during recovery by passing tokens. However, we
improve even on the explicit vector time work of Peter-
son and Kearns by truly using the full power of temporal
abstraction.

Recovery protocols based on checkpointing without
message logging restore the system to a recovery line com-
posed of local checkpoints. Organizing recovery lines
into an increasing sequence (e.g., [5, 7]) may allow asyn-
chronous recovery and may tolerate concurrent failures.
However, unless for every state AU , the maximal global
state containingAU is a recovery line, checkpointing-based
recovery will force surviving processes to roll back compu-
tation that does not depend on the computation lost due to
failure

One approach to avoiding the exponential rollback of
Strom and Yemini is to enforce that all messages are deliv-
ered in causal order, as in ISIS [2]. Another approach is to
have each process piggyback all received failure messages
on each outgoing message and thus restrict enforced causal
delivery to failure announcements. Essentially, our pro-
tocol optimizes these approaches. The system timestamp
vector concisely expresses the information processes would
deduce via causal delivery of failure announcements. Fo-
cusing on this resulting state information permits arbitrary
delivery orders.

6. Conclusion

Optimistic rollback protocols improve on other recovery
methods by requiring little synchronization during failure-
free operation and by requiring only the theoretical mini-
mum amount of computation to be rolled back (since the
only computation that must be rolled back is the computa-
tion that depends on the computation lost due to failure).
Our protocol improves on previous optimistic rollback pro-
tocols by providing both completely asynchronous recovery
and a worst-case upper bound of at most one rollback at each
process. The key to asynchronous optimistic rollback re-
covery is the realization that two levels of partial order time
abstraction are relevant: causal dependency on rolled-back



events and potential knowledge of rollbacks. Our protocol
explicitly tracks these two levels of time.
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