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The Computability and Complexity of
Optical Beam Tracing

John H. Reif*

Abstract

Consider optical systems consisting of a set of refractive or re-
flective surfaces. The ray tracing problem is, given an optical
system and the position and direction of an initial light ray, to
decide if a light ray reaches some given final position. We as-
sume the position and the tangent of the incident angle of the
initial light ray is rational. For many years, ray tracing has been
used for designing and analyzing optical systems. Ray tracing
is now used extensively in computer graphics to render scenes
with complex curved objects.

We investigate the computability and complexity of the ray
tracing problems over various optical models. Our results show
that, depending on the optical model, ray tracing is sometimes un-
decidable, sometimes PSPACE-hard, and sometimes in PSPACE.

1 Introduction

We examine ray tracing problems in this paper. The history
of ray tracing goes back at least to Archimedes, who examined
images formed by a mirror to understand the law of reflections.
In the 15th to 18th centuries, many scientists and astronomers
in Europe worked on geometrical optics and invented optical
instruments such as telescopes. In 1730, Newton published his
book Opticks [17] in which he formally defined the reflective
and refractive laws of optics, and first defined and investigated
some ray tracing problems. These classical ray tracing problems
are very important to the design of most optical systems which
consist of a set of refractive or reflective surfaces, and involve
tracing the path of rays to investigate the performance of the
systems. Ray tracing also has important application in computer
graphics, where ray tracing is used to render pictures which
consist of objects with surfaces that reflect or refract light rays
[9, 10, 19]. See [2, 3, 12, 13, 14] for physical theories and a brief
history of ray tracing.

The ray tracing problem is a decision problem: given an opti-
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cal system (namely, a finite set of reflective or refractive surfaces)
and an initial position and direction of a light ray and some fixed
point p, does the light ray eventually reach the point p? Our
optical systems consist of a finite set of optical objects that may
be totally reflective (we call these mirrors), partially reflective
(we call these half-silvered mirrors), or totally refractive (we
call these lenses). In this paper we restrict ourselves to opti-
cal systems constructed out of flat (e.g., planar sections) mirrors
and half-silvered mirrors (throughout this paper, we assume that
mirrors are rectangles, and we call their corners the mirrors’
endpoints.) and out of lenses whose boundaries are quadratic
curves. (We describe these lenses by the term quadratic lenses.)
Do mirrors reflect if a light-beam is directed exactly at an end-
point? This might be important for the case when we form a
comer out of two mirrors. What should happen when the light
beam is directed exactly at the corner? For the purposes of our
papers, we shall allow mirrors (and half-silvered mirrors) to have
either open, closed, or mixed borders.

The positions of our mirrors, half-silvered mirrors, and lenses
can be either rational or irrational. If the optical system consists
only of mirrors or half-silvered mirrors with endpoints with ra-
tional coordinates, we say that the optical system is rational. If
the optical system contains mirror or half-silvered mirrors with
endpoints that have irrational coordinates, we say the optical
system is irrational.

We are interested in determining if the light will reach a fi-
nal certain position, and not in the intensity of the light at that
position. Throughout this paper, we assume that the path taken
by light rays are determined by the classical laws of optics: the
law of reflection and the law of refraction. (The law of reflection
states that the incident angle and the reflected angle are equal,
and the law of refraction states that the angle of refraction de-
pends on the incident angle and the index of refraction of the
materials.) (Figure 1.)

We always assume that the initial position of the light ray has
rational coordinates, that the tangent of the initial incident angle
is rational, and that the test point p has rational coordinates. (In
general, in our lower bound proofs, it suffices to let the light rays
initially enter perpendicular to a window of the optical systems.)
Our surprising discovery is that if the optical system is rational it
may have high complexity, or even be undecidable. We generally
denote 7 to be the number of bits in binary encoding of the optical
system.

Our results of the computational complexity for ray tracing in
various optical systems may be summarized as follows:
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Figure 1: Law of reflection and law of refraction with indices of
refraction ry and r;.

1. Ray tracing in three dimensional optical systems which con-
sist of a finite set of mirrors, half-silvered mirrors, and
quadratic lenses is undecidable, even if the endpoints of the
objects in the optical system all have rational coordinates.
However, the problem is recursively enumerable.

. Ray tracing in three dimensional optical systems which con-
sist of a finite set of mirrors is undecidable, if the mirrors’
endpoints are allowed to have irrational coordinates. How-
ever, the ray tracing problem is PSPACE-hard, if we restrict
ourselves to mirrors with endpoints that are rational coordi-
nates.

3. For any d > 2, ray tracing of d dimensional optical sys-
tems which consist of a finite set of mirrors surfaces lies in
PSPACE, if the positions of all the surfaces are rational, and
they lie perpendicular to each other. Ford > 3, the problem
is PSPACE-complete.

We consider three optical models in this paper:

In optical model (1), each optical system consists of a finite set
of quadratic lenses, mirrors, and half-silvered mirrors. A light
ray travels through the system with reflections or refractions. We
show that the problem of deciding if the light ray will reach a
given final position in this system is undecidable. In order to
show this, we simulate some universal Turing machine with this
optical model. It is perhaps surprising that our optical system
has a fixed number of optical lenses and mirrors, and yet the
ray tracing problem for it simulates any recursive enumerable
computation, where the input is given by the initial position of
the light ray.

In optical model (2), each optical system consists of a finite set

of mirrors and half-silvered mirrors in three dimensional space.
We again show that the problem of deciding is undecidable. To
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show this, we simulate a 2-counter machine with this optical
model. Next, we consider the computational complexity when
we restrict ourselves to rational optical systems. In this case,
we show that the problem is PSPACE-hard. To show this, we
first define a new type of automaton: augmented bounded 2-
counter machines. Then, we simulate augmented bounded 2-
counter machines with an optical system in this model. By
showing augmented bounded 2-counter machines can compute
an arbitrary polynomial space problems, we conclude that the
problem of deciding if the light ray reach a given final position
in this system is in PSPACE-hard. (Although we show that the
problem is PSPACE-hard, we do not even know if this restricted
problem is decidable.)

Optical model (3) is a restriction of optical model (2). In
optical model (3), each optical system occurs in a unit-sized
d dimensional hypercube. The hypercube contains a rational
optical system of mirrors. Each of the mirrors lies perpendicular
to every other mirror. We show that the problem of deciding if the
light ray will reach a given final position has a non-deterministic
polynomial space algorithm, thus showing the problem is in
PSPACE.

Theoretically, these optical systems can be viewed as general
optical computing machines, if our constructions can be carried
out with infinite precision, or perfect accuracy. However, these
systems may not be practical, since the above assumption may
not hold in physical world. Moreover, at the atomic level of dis-
tances, the diffraction and interference properties which yield the
classical optical laws begin to fail [S]. However, in contemporary
computer science practice, only the classical laws are considered.
Our work has immediate relevance for describing the complexity
and computability of ray tracing as currently practiced.

Abstract ray tracing problems have been independently inves-
tigated by Fiume [6]. Fiume’s work does not describe actual
optical systems, but rather considers symbolic systems which
transform intensity of rays without any consideration of the ge-
ometry of the optical systems. He showed that his abstract ray
tracing problem was PSPACE-complete, if the amplification of
light intensity was allowed. If the amplification is not allowed,
then he showed the problem became NP-hard. However, his
transformations on the intensity of optical rays would require
electro-optical devices or photorefractive crystals, which are not
purely optical devices. In contrast, our results do not depend
on any intensity of the rays. Instead, we encode problems by
the position of optical beams. Manipulation of the positions is
carried out by use of pure geometrical optics. Thus, our mod-
els give results more appropriate to computational geometry. In
particular, they answer the ray tracing problems in the models
which are described by Newton in his Opticks, and which form
the backbone of modern ray-tracing theory.

In the following sections (2.1, 2.2, 2.3), we describe the com-
putability and complexity of ray tracing problems in optical mod-
els (1), (2), and (3). In section (2.4), we discuss an interesting
phenomenon which leads to the conclusion that there exists an
optical system such that if a ray enters from a single fixed point, it
visits an edge of unit length densely and uniformly. In section 3,
we give some interesting and challenging further open problems



concerning optical systems.

2 Optical Models

2.1 Three dimensional optical systems with
curved reflective or refractive surfaces

Optical System

In our first optical model, we assume that each optical system
consists of a finite set of quadratic lenses, mirrors, and half-
silvered mirrors at rational positions. Here, all the surfaces are
represented by rational quadratic equations. A light ray travels
through the system with reflections or refractions. The initial
position of the light ray has rational coordinates and the tangent
of the initial incident angle is rational. (Note every refiection and
refraction takes place at a rational position. Also, the angle of
reflected or refracted light rays have rational tangents.)

The ray tracing problem is recursively enumerable

The total path which the light ray travels can be partitioned into
simple straight subpaths (i.e., line segments) between reflective
or refractive surfaces. We assume both the position and the
tangent of the angle of the light ray at the endpoint of a subpath
are rational. Then, by the laws of reflection and refraction,
the tangent of an angle which the subsequent subpath makes
is rational, and also the end points of the subsequent subpath
are rational. Therefore, they can be represented by rational
equations, and hence by induction, the total path consisting of a
finite number of subpaths can be traced, to see if it ever reaches
the specified target final point.

Turing machines

We show that the problem of deciding if the light ray will reach
a given final position in this system is undecidable. We show
how to simulate any Turing machine as an optical system. In
particular, this implies that some optical system simulates some
universal Turing machine. The basic model of a Turing machine
[11] has a finite control, a tape which contains cells and input,
and a tape head that reads one cell on the tape at a time. The tape
can be infinite in both directions.

Our Turing tape simulation will assume the tape always con-
tains only 0’s and 1’s. We assume that the set of states in the finite
control is 0 = {q1.42..-- . gs}; that & is the transition function;
that g, is the initial state; and that g; is the (only) final state.

Simulation

First, we show the relation between this optical system and the
Turing machine. We view this optical system as a set of complex
optical boxes, each of which has a set of basic boxes with mirrors,
half-silvered mirrors, and quadratic lenses. Each complex box
has a unit square through which the light ray enters (always en-
tering perpendicular to this surface), and one or two unit squares
from which the light ray exits (always exiting perpendicular from
this surface). These unit squares are called the input windows
and the output windows. Our Turing tape is encoded by the
(x.y) coordinates of the light ray relative to the input and output
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Figure 2: A Turing machine and two real numbers U = 0.uou, ...
and V = 0.vgv, ... which represent the tape value.
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Figure 3: The representation of (U.V) in a unit square.

windows. We organize these complex boxes so that the whole
system simulates a Turing machine.

Each complex box will correspond to one state of the Turing
machine’s finite control. Each complex box implements the
transition function on the tape defined for a particular state; and
the light beam exits out of one of the two exit windows depending
on which state the Turning machine will enter next. The system
then projects the light ray onto the next complex box (preserving
the coordinates of the light beam relative to the window), and thus
simulates the transition of states defined on the Turing machine.
This is the general idea of how to simulate a Turing machine by
an optical system in this optical model. Next, we describe this
idea in more detail.

Representation of Operations

We represent the storage tape of M by using two binary fractions
U, and V. Let uy be the symbol which the tape head is scanning.
Let uy., uy. us. .. . be the successive symbols on the left of up, and
Vo.V1.Vs2.... be the successive symbols on the right of uo. This
is shown in Figure 2. Then, we can represent the storage tape by
using two numbers U, and V:

B

U= Y w2 M
i=0

Vo= 3 w2 @
=0

U and V form coordinates on a unit square, since 0 < U < 1,
and 0 < V < 1. (Figure 3.)

Next, we consider the mapping from the transition function ¢
of M into the transition operation of this optical system. Turing
machine transitions can be divided into two cases, left moves,
and right moves.
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We consider two cases of 4:
Case 1:

&g.c)=(q'.w.L)
Case 2:

8(g.c) ={(q'.w.R)
Here, q is the current state, ¢’ is the next state, ¢ € {0.1} is
the symbol which the tape head scanned, and w € {0.1} is the
symbol which the tape head writes on the tape. L represents a left
move, and R represents aright move. Consider the corresponding
operations of this optical system.
Case 1: (Left move) 8(g.c) =(¢’.w.L)

Let Upew, Vaew be the values of U and V respectively after this
transition. Then, Upew, Vaew can be written as:

Unew = 25 /2% 22U — 10/2) &)
i=1
Vaew = W/2+ (1/2)i v /241
=0
- w242 @

Case 2: (Right move) ¢(g.c) = (¢'.w.R)

In this case, Unew, Vaew Can be written as:

Unew = Vo/2+w/4+(1/2) i u; /2!
i=1
= vo/2+w/4+ (U — uo/2)/2 5)
Vaew = 2 ij vi/2% = 2V — v /2) ©)

i=1

If we can implement complex optical boxes which can “read”
the light beam entering the window, perform the transformations
listed above, and then redirect the light beam to a new complex
optical box corresponding to the new state, we will have suc-
ceeded in simulating our Turing machine. Next, we describe
how to build these complex boxes.

Basic Boxes

First, we describe basic boxes which can be used by each complex
box.

¢ Readout box
We assume U, and V are represented as a position on a
unit square lying on the x-y plane, and we use the z axis
which is normal to this plane. The readout box uses two
flat mirrors (reflective surfaces) making an angle /2 at
x=1/2. (Figure 4.)

The figure shows several views from different angles. The
light ray entering a box from the unit square hits one of two
flat reflective surfaces in the box. We call the unit square
which the light enters input window, and a window of size
1 by 1/2 from which the light exits the box output window.
Then, if U < 1/2, the ray will be reflected through the
left output window. If U > 1/2, the ray will be reflected
through the right output window. Here, we observe that
V maintains its value along the y axis from the entrance

From x-z plane
1/2 1

Z=x-1/2 (0&x<1/2)
= =1+ 1/2 (1/2¢x¢1)

Figure 4: Readout box.

Two lenses

Two lenses
focal length T, 21,

Figure 5: Multiply2 (divide2) box.

window to one of the output windows. U loses its value
along the x axis, but the value U ~ uo/2 is obtained along
the z axis at the output window.

Multiply2 (Divide2) box

We need a box which performs the multiplication by two
(division by two) operations used in the equations. This
can be done by using a pair of cylindrical quadratic lenses
(refractive surfaces) placed with rational endpoints. (Figure
5)

Similarly, we use terms, input window and output window
to denote the window through which the light enters, and
the window from which the light exits.

Beam splitter (mixer) box

We need this box in order to allow light rays to travel through
one of several possible paths to enter the next entrance
window. This box is merely a half-silvered mirror oriented
at a /4 angle.

o Beam turner box
‘We need this box in order to change the direction of the light
ray by 7 /2. This box is merely a mirror oriented at a 7 /4
angle.

We combine these basic optical boxes to construct complex
boxes which implements transition function ¢. Here, we retain
the above notation.

Case 1: (Left move) 6(g.c) = (¢'.w.L)
‘We must configure boxes to project the light ray at Upey . Vaew:

Unew = 2(U - u0/2)
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Figure 6: 6(g.c) = (¢'.w.L).

Vaew = W/2+V)2

Figure 6 shows an implementation of this function. For each
state g, a separate complex of boxes, such as shown in Figure
6, is constructed. The box in the middle is a readout box which
reads uo. Now, suppose i = 1, then the light enters the multiply2
box on right. At this point, V has not changed its value, but the
light ray comes out of the face along the z — y plane, and the
z coordinate of the intersection is the value for U,... The light
ray which exits the multiply2 box enters the divide2 box. This
halves the value of V. The light ray which exits the divide2 box
enters the readout box of state ¢’ (¢ = 1) with shifting by the
value w/2. The path which would be taken if up = O can be
similarly organized, and the light ray can enter the readout box
of state ¢’ (¢ = 0).

Case 2: (Right move) 8(q.¢) = (¢'.w.R)
In this case, we must project the light at Unew, Vaew:

Upew =
View

Vo 2 +w/4+ (U —up/2)/2
2(V - vo/2)

Figure 7 shows an implementation of this transition.
Undecidability Proof

We have shown our system and its relation to the Turing machine.
By simulating each ¢ function as a complex box and routing the
rays between the boxes (using half-silvered mirrors to merge
paths), we can simulate any Turing machine, and in particular,
some universal Turing machine. We immediately have

Theorem 2.1 The ray tracing of 3-D optical systems consisting
of quadratic lenses, half-silvered mirrors, and mirrors is unde-
cidable, even if the endpoints of every object in the optical system
has rational coordinates.

path
(if u0=1,v0=0)
box g -

1
input light ray

path if
(U0=1,v0=1) °

~ multiply2
2AV-1/2)
ifvo=1

- 0
divide2
- 1/2)/2
y Ao =0
A
ifu=0 if W=1
r4

Figure 7: 4(g.c) = (q¢'.w.R).

divide2 readout
u/s2 u0

2.2 3-D optical systems with flat reflective or re-
fractive surfaces

2.2.1 The general case

Optical System

In this model, each optical system consists of a finite set of mirrors
and half-silvered mirrors in three dimensional space. We shall
show this system is undecidable by using mirrors with irrational
coordinates as endpoints.

2-counter Machine

In order to show that the problem of deciding in this model is
undecidable, we will show that an optical system can simulate
a 2-counter machine. Since a 2-counter machine can simulate
an arbitrary Turing machine, we can conclude that the previous
problem is undecidable.[11] A 2-counter machine has a finite
control, and two counters which can assume arbitrarily large
values. The counters can be incremented, decremented, or tested
for zero.

Simulation

First, we show the relation between this optical system and the
2-counter machine. We view this optical system as a set of
optical boxes which shift light rays by an irrational distance
along either the x or y axis by using flat reflective surfaces. Each
box has a unit square through which the light ray enters normally,
and has a unit square from which the light ray exits normally.
Similarly, we call the unit square which the light ray enters the
input window, and the unit square from which the light exits
the output window. The values of the counters (m.m’) can be
encoded as a position (m¢{ mod 1. m'¢ mod 1) relative to the unit
square where ¢ is some irrational value. The 2-counter machine
has a finite number of states, and each state can be represented
by a box. Both incrementing and decrementing a counter can be
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Figure 9: Modulo 1 operation.

done in this optical system by shifting the light ray by { modulo
1. Checking if a count is zero can be done by testing to see if a
light beam strikes the rim of a unit square.

Representation of Operations

Use U and V to denote the values of two counters. In this optical
system, U and V are encoded as a position on a unit square. Let
{ be an irrational number such that 0 < ¢ < 1. The operations
for a 2-counter machine are:

Operation 1: Increment (or decrement) a counter by 1.
Operation 2: Check if a counter is 0.

Now, we describe the corresponding operations for this optical
system.

Operation 1: Shift the light ray along the x axis by ¢ (or —¢)
in modulo 1 space. The modulo 1 operation is simple, and is
implemented by flat reflective surfaces. These operations can be
done by using flat reflective surfaces as in Figures 8 and 9.

Operation 2: In order to check if the U counter is zero, we
check whether the light ray passing through x = 0 from x > 0.
(We are using the fact that we have mirrors with open edges
here.) The case for the V counter is handled similarly.

Since m¢ = 0 if and only if m = 0, we have
Lemma 2.1 This optical counter can simulate a counter.

Optical Boxes
First, we describe optical boxes which are used in this system.

o Shift box
This box shifts light rays by an irrational distance . The
shift box uses four flat mirrors as shown in Figure 8.

e Modulo box
The modulo operation uses a mirror and a half-silvered
mirror, as in Figure 9.

Since a two-counter machines can simulate universal Turing
machines, we have:

Theorem 2.2 Ray tracing of 3-D optical systems consisting of
half-silvered mirrors and mirrors is undecidable.

2.2.2 The rational case

We now restrict ourselves to rational optical systems. We shall
show that this system is PSPACE-hard, although we still do not
know if it is decidable.

Augmented Bounded 2-Counter Machine
First, we define a new machine type:

Definition 2.1 A 2" augmented bounded 2-counter machine has
two counters which count up to 2" — 1. Furthermore, it can add
271 10 a counter, and it can read the 2"~" bit of its counters.

We will simulate a 2" augmented bounded 2-counter machine
with a rational optical system.

Representation of Operations

We describe the operations which we need to simulate a 2" aug-
mented bounded 2-counter machine. Counting operations are
handled as before, only ¢ is set to the rational value 27", We use
U, and V to denote the values of two counters. Let ¢ be a rational
number such that £ = 27", We consider n to be the input size,
since the optical system can be described in a polynomial in n
number of bits.

Once again, we represent the counters (m.m’) as (m mod
1,m' mod 1).

Lemma 2.2 This optical counter can count up to 2" — 1.

Proof: Since ¢ is a rational number, for any integer m we have
m¢{ mod 1 = 0 if and only if m = k2", where k is an integer.
Hence the counter can count up to 2" — 1.

Next, we introduce the additional operations.

e Add2"!to acounter
This can be done by shifting the light ray along the x or y
axis by 1/2.

o Read the 2"~/ bit
We do this by using the “readout box” introduced in Section
2.1.

Using these boxes, we can build an optical system that simu-
lates a 2" augmented bounded 2-counter machine.

Decidability

Lemma 2.3 Augmented bounded 2-counter machines can de-
cide any PSPACE problem.
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Figure 10: Cyclic Turing machine tapes.

Proof: It is suffice to show that the 2" augmented bounded 2-
counter machine can simulate a space n Turing machine. Any
linear space Turing machine has a storage tape of length n, where
n is the input size. We show that the 2" bounded 2-counter
machine can simulate this Turing machine. We consider the
Turing tape to be cyclic. (Figure 10.) We can view the storage
tape as a binary number, where the 1’s digit lies under the tape
head. Let Count be the binary representation of the storage tape.
Then, Count satisfies 0 < Count < 2. One of the counters of
the 2" augmented bounded 2-counter machine stores this value,
Count. Each time when the tape head moves left or right, we
must compute the new Count which represents the storage tape
at the next step. In order to compute the new Count for a right
move, we first drop the 2"~ bit off the input (if it is set), then we
multiply by two (using the second counter) and then we add one
if the original counter had the 2"~ bit set. For a left move, we
first divide Count by 2 (using the second counter), and then add
27! if 1 is to be written on the tape.

The simulation is straightforward, completing the proof.

We immediately have

Theorem 2.3 Ray tracing of 3-D rational optical systems is
PSPACE-hard.

2.3 d dimensional optical systems with perpen-
dicular surfaces

Optical System

In this model, we consider rational optical systems where the
mirrors lie perpendicular to each other in d dimensions.
Decidability Proof

We show that the problem of deciding if the light will reach a
certain position in this system is in PSPACE. First, we show the
problem is in PSPACE if the angle which the initial light ray
makes with the system is 7 /4.

Lemma 2.4 The problem of deciding if the light ray will reach a
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Figure 12: Expanding grid lines.

certain position is in PSPACE, if the angle which the initial light
ray makes with the system is m /4.

Proof: Since the input to the optical system is encoded in 7 bits,
we can construct grid lines at every 2" interval such that the
light ray always intersects grid lines at the grid points, where
h is a constant. (Figure 11.) The number of the grid points
in the system is 24" We give a non-deterministic polynomial
space algorithm for the ray tracing problem. Let M, be a non-
deterministic polynomial space Turing machine which compute
this problem. M, has two vectors. Let CUR, and NEXT be
these two vectors. CUR represents the current position and the
direction of the light ray in the system. NEXT represents the
position and the direction where the light ray will be reflected
after leaving the current position. M, non-deterministically guess
NEXT by using CUR, and determines the right reflection position
in a polynomial space. Initially, CUR stores the position and the
direction of the initial light ray. We assume inductively that
CUR stores the current position and the direction of the light ray.
M, halts if it reaches the specified position. Since these vectors
representing the position and the direction of the light ray can
be encoded in a polynomial of n, we can construct such a non-
deterministic polynomial space Turing machine to compute this
problem. By Savitch’s theorem, the problem is in PSPACE.

Next, we consider the case in which the incident angle « is
not 7 /4. We simply give a sketch of the proof. We simply note
that the system can be reduced to the 7 /4 case by multiplying
one of the axes by the tangent of . (See Figure 12.) The proof
proceeds similarly.
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Figure 13: Multiplication by ¢.
‘We hence have

Theorem 2.4 The ray tracing of d dimensional rational optical
systems which consist of a finite set of perpendicular mirrors is
in PSPACE.

2.4 Other Optical Ray Tracing Phenomena

By using linear iterative maps which generate oc-distributed
sequences [16], we show that an optical system exists such that
if a ray enters from a single fixed point, it visits an edge of unit
length at every point densely and uniformly in the range [0. 1).

First, we describe an ~c-distributed sequence which is dense
and uniform in the range [0. 1).

Lemma 2.5 {¢'mod 1 | i integer > 0} is dense and uniform in
the range [0.1) (oc-distributed sequence in the range [0, 1)) for
almost all real numbers ¢ > 1.

Proof: The proof of this lemma is found in [7, 16].
This leads to

Theorem 2.5 An optical system exists such that if a ray enters
from a single fixed point, the set of points it visits on an edge of
unit length is dense and uniform over the range [0.1).

Proof: The idea is to construct an optical box which performs the
multiplication by an irrational number £ which satisfies Lemma
2.5. The implementation of modulo operations is already in-
troduced in Section 2.2. To perform the multiplication by an
irrational number ¢, we use two lenses, where one of the lenses
has a focal length of one, and the other has an irrational focal
length £. Then, by placing them with the distance 1 + £, we can
construct an optical box which implements the multiplication by
¢. (Figure 13.)

We can extend this type of problem by considering polygons
whose sides form mirrors. We can then pose the illumination
problem: to find an initial position and orientation which would
cause a light beam to visit all the interior edges of the polygon
densely? These problems are often called billiard ball problems,
and the literature contains a number of “art gallery theorems,”
about these models. One particular result {1, 15, 18] states that
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for every polygon whose angles are rational multiples of «, the
illimunation problem has a solution. We ask the following exten-
sion of the illumination problem: can the points on the polygon
be visited densely and uniformly?

3 Conclusion and Further Open Prob-
lems

Our paper has classified a wide degree of ray tracing scenarios
and given lower bounds for many of the problems. Unlike previ-
ous approaches (such as [6]) our work considers only geometric
constructs. Our models give interesting results in terms of pure
computational geometry.

There are many further interesting problems which remain
open. Here are a few:

1. Find a lower bound for computations of ray tracing in two
dimensional rational optical systems. Note three dimen-
sional case is PSPACE-hard, but we have no lower bound
in two dimensional case.

2. Are optical systems with only reflective flat surfaces always
decidable?
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