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Geometric Characterization of
Series-Parallel Variable Resistor Networks

Randal E. Bryant, Fellow, IEEE, J. D. Tygar, and Lawrence P. Huang, Member, IEEE

Abstract— The range of operating conditions for a series-
parallel network of variable linear resistors, voltage sources, and
current sources can be represented as a convex polygon in a
Thevenin or Norton half-plane. For a network with » elements of
which & are variable, these polygons have at most 2k vertices and
can be computed in O(nk) time. These half planes are embedded
in the real projective plane to represent circuits with potentially
infinite Thevenin resistance or Norton conductance. For circuits
that have an acyclic structure once all branches to ground are
removed, the characteristic polygons for all nodes with respect
to ground can be computed simultaneously by an algorithm of
complexity O(nk).

1. INTRODUCTION

HE TASK of worst case circuit analysis [7] involves
determining the extreme ranges of circuit operation given
a set of possible variations in the circuit parameters. Most
attempts to solve this problem employ sensitivity analysis,
where one computes the behavior of the circuit under nominal
conditions and characterizes the incremental effect of the
possible variations [S], [6]. For small variations, the analysis
of varying individual parameters can accurately predict the
effect of varying multiple parameters as well. Hence one
can determine the extreme operating conditions by applying
a standard optimization method such as steepest-descent to
maximize or minimize a desired objective function (e.g., a
particular branch voltage). When the parameters vary over a
wide range, however, characterizing the effect of these vari-
ations becomes more difficult. It can be shown that applying
steepest-descent methods based on individual sensitivities can
lead to nonoptimal [7]. A common practice is to use steepest-
descent, but then to recompute the sensitivities at the calculated
solution point to determine whether changing some parameter
would improve the solution further [4]. Such a technique can
determine if the computed result is locally optimal, but it may
not find the global optimum.
In his book on circuit theory [2], Calahan describes a method
for performing a worst case analysis of a variable linear
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resistor network by casting it as a linear programming problem.
Unfortunately, his method will not find the optimum solution
when the optimum setting of the resistors causes some of the
branch currents to be reversed from their directions in the
initial solution. Calahan’s derivation overlooks this limitation.
In proceeding from the first to the second equation on page
172, he multiplies both sides of an inequality with a factor
that could possibly be negative, without considering the need
to change the sense of the inequality.

Methods have been proposed to efficiently compute the
effect of any given variation {11], [14]. These methods re-
quire explicitly computing a solution for each combination
of parametric values, and hence do not guide the search for
extreme conditions.

An alternate technique is to use Monte Carlo methods to
statistically characterize the effects of possible variations by
analyzing the circuit under a number of randomly-generated
parametric values. This approach is not guaranteed to detect
the extreme operating points of the circuit, especially when
those points are statistically improbable.

A final method is to develop bounding techniques that
succinctly characterize the potential range of behaviors [19].
Bounding approaches have the advantage that they capture
the full range of behaviors with a single computation. From
this information the extreme points can readily be determined.
Bounding approaches based on interval analysis have been
proposed for worst case circuit analysis. Such methods can
yield very pessimistic results, since the interval algebra com-
pletely ignores all correlations between the different instances
of a parameter.

This paper considers methods to bound the range of op-
erating conditions for networks containing variable, linear
resistors. In earlier work, we have shown that computing the
precise range of possible voltages in an arbitrary variable
resistor network is NP-complete [13]. This result explains
why standard optimization techniques such as steepest-descent
and linear programming cannot solve the worst case anal-
ysis problem even for the seemingly simple case of linear
resistors-if we could solve the worst case analysis problem
efficiently, then this would give us a method for solving
a wide variety of difficult optimization problems [8]. Sim-
ilarly, a reliable technique based on Monte Carlo analysis
would yield efficient randomized algorithms for these other
problems. Thus, it is unlikely that an efficient algorithm
exists for worst case analysis of arbitrary, variable resistor
networks.
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This paper describes an efficient method for computing
exact bounds on the operating conditions of a variable resistor
circuit under the restriction that the circuit has a series-parallel
structure. The method handles networks of independent, vari-
able linear elements: resistors, voltage sources, and current
sources. Arbitrary, nonnegative resistance values are allowed,
including infinite ones. The method derives exact results for
any physically realizable series-parallel network. In particular,
it fails only under conditions where two voltage sources
of potentially differing voltage are connected in parallel or
where two current sources of potentially differing current are
connected in series. Our method is superior to one based in
interval analysis in that the computed solution contains only
operating points that could actually arise for some setting of
the circuit parameters.

Worst case analysis of variable resistor networks is re-
quired when modeling MOS circuits by linear switch-level
simulation [18]. In this approach to simulation, transistors are
modeled as switched, linear resistors, while node voltages are
approximated by logic values {0,1, X}, where X indicates an
unknown or potentially non digital voltage. When a transistor
gate node has value X, the transistor is assumed to have an
arbitrary resistance greater than or equal to its value when fully
on. The simulator must then compute the ranges of possible
steady state voltages on the nodes for all possible variations of
the resistances to determine the new node states. Most linear
switch-level simulators use simplistic methods to compute the
possible voltage ranges [3], [18]. At times they can produce
results that are overly pessimistic, computing a larger range
than is actually achievable, while at other times they produce
results that are overly optimistic, computing a smaller range.
In fact, existing programs can even fail to compute the correct
result for fixed resistance networks.

II. SUMMARY OF METHOD

Our approach takes a geometric view of the set of possible
network operating points. The possible Thevenin or Norton
equivalent circuits for the network are viewed as points in
a half-plane. Thevenin equivalents having finite resistance are
represented by points of the form (R, V'), while Norton equiv-
alents having finite conductance are represented by points of
the form (G, I). Applying concepts from projective geometry
1], we introduce a class of infinite “ideal” points to represent
infinite resistances and conductances. That is, the Thevenin
equivalent of a current source is given by ideal point ((I)),
while the Norton equivalent of a voltage source is given by
ideal point ({V)). Note that unlike other geometric interpreta-
tions of optimization problems, our coordinates correspond to
derived quantities rather than to the optimization parameters.

Our main result is to show that the Thevenin or Norton
equivalent of a series-parallel network containing k variable
elements can be represented as a convex polygon of degree
(i.e., number of vertices) less than or equal to 2k. Furthermore,
if the network contains a total of n elements, this polygon can
be computed in time O(nk). Given such a polygon, one can
easily determine the ranges of possible steady state voltages,
currents, resistances, or conductances.
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Fig. 1. Example of variable resistor circuit. The range of possible Thevenin
equivalent circuits forms a convex polygon.
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Fig. 1 illustrates this approach for a circuit used in [7]
to illustrate the inability of small-scale sensitivity analysis
to solve the worst case analysis problem. The Thevenin
representation of the circuit across the two terminals is plotted
on the right hand side of the figure. The Thevenin equivalent
under nominal conditions gives the point labeled “Nominal.”
The lines labeled R; and R illustrate the sensitivities with
respect to variations in these two resistors relative to their
nominal values. These sensitivities would seem to indicate that
the minimum voltage would occur when R; is minimized and
R, is maximized. Although not shown, sensitivity analysis
also indicates that R3 should be minimized. Under these
conditions we would obtain a Thevenin equivalent given by
the point labeled [—, +, —]. Note however, that the Thevenin
voltage would actually be lower by setting R; to its maximum
value, as denoted by the point labeled [+, +, —]. As this figure
illustrates, the range of possible Thevenin equivalents forms
a convex polygon with 6 vertices. By computing this polygon
explicitly, we can determine the extreme values of the voltage
across the terminals by finding the vertices with minimum
and maximum Y values.

For the special case of a “grounded tree” network, where
the circuit becomes acyclic when all branches to ground are
deleted, we can compute the polygons for every node in the
tree (relative to ground) by an algorithm with time complexity
O(nk). This algorithm is optimal in that it generates n
polygons, each having degree up to 2k.

This algorithm could form the basis for the steady state
voltage computation in a linear switch-level simulator. By
performing series-parallel reductions on pullup and pulldown
network structures, most of the channel connected components
found in MOS circuits can be represented as grounded trees.
The worst case complexity would be quadratic in the number
of transistors, as opposed to the linear complexity of existing
algorithms. However, this worst case complexity would only
arise under the following conditions: (1) the channel-connected
component is very large, (2) a large fraction of the transistors
must be modeled as variable resistors, and (3) the achievable
voltages on almost every node strongly depends on most of
these variable resistances. Such a combination would seldom
arise in practice.

I1I. GEOMETRIC REPRESENTATION

Our geometry is based on planar projective geometry [1],
where the conventional set of “Euclidean” points is augmented
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by a set of “ideal” points denoting the intersections of parallel
lines. We restrict Euclidean points to lie in the half-plane
having Cartesian coordinates with z > 0. In electrical terms,
this means that no negative resistances or conductances are
allowed.! Ideal points represent values at « = co. In electrical
terms, these points describe the behavior of infinite resistances
and conductances. Despite the inclusion of ideal points, many
of the key concepts carry over from Euclidean geometry. We
will refer to the two regions for representing circuit behavior
as the Thevenin and Norton “half-planes.”

A. Points

The set of points P consist of Euclidean points of the form
{z,y) for real values z and y such that z is nonnegative, and
ideal points of the form ({m}) for real value m. Ideal point
{{m)) can be thought of as representing the limit of the set
of points {{z,mz + b)|b € R} as = approaches infinity. As a
naming convention, we will denote the coordinates of a point
by subscripting the coordinate name with the point name, e.g.,
point p will have coordinates z, and y, if it is a Euclidean
point, and m,, if it is an ideal point.

A point in the Thevenin or Norton half-plane characterizes
a circuit for a particular setting of the element values. Fig. 2
illustrates several examples of fixed circuit elements. In this
figure, the half-planes are drawn with Euclidean points on the
left and ideal points on a separate axis on the right. Note
that the X axis for the Euclidean points actually extends
indefinitely far to the right. Note also that the vertical scale
for ideal points will generally differ from that for Euclidean
points. A voltage source V' is represented in the Thevenin half-
plane by the Euclidean point (0, V') and in Norton half-plane
by the ideal point ({V'}). A current source I is represented
in a dual way as the ideal point ((I}) in the Thevenin half-
plane and as the Euclidean point (0, I) in the Norton. Finally,
a nonzero, finite resistance R is represented in the Thevenin
half-plane by the Euclidean point (R 0,) and in the Norton
by the point (1/R, 0). Euclidean point (0, 0) is of special
interest—it is the Thevenin representation of a short circuit and
the Norton representation of an open circuit. Also of special
interest is ideal point ((0))—the Thevenin representation of an
open circuit and the Norton representation of a short circuit.

As notation, we will say that points p and ¢ are ordered
left to right, denoted p <y ¢ (for “Horizontal”) if either p
is a Euclidean point while ¢ is an ideal point, or both are
Euclidean points and x;, is less than z,. Similarly, we will
say that p and ¢ are vertically aligned, denoted p =g ¢ (for
“horizontally equivalent”) if either both are ideal points or are
Euclidean points with identical X coordinates. Observe that
for any two points p and ¢, we must have either p <y g,
p =g ¢, or ¢ <y p. Points p and q are ordered p <y ¢ if
either p <y g or p =g ¢.

Vertically aligned points p and g are ordered vertically,
denoted p <y g if either both are ideal points and m,, is less
than m, or both are Euclidean points and 1y, is less than y,.

! This restriction is introduced for sake of simplicity. It avoids the difficulty
in projective geometry of defining an ordering of points on a line-a line is
viewed as “wrapping around” through its ideal point. It seems likely that our
approach could be extended to handle negative resistances.
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V=15 I=-075 R =05
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104 104 SERS 104
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Fig. 2. Geometric representations of fixed circuit elements. Each element is
represented by a point in the Thevenin and Norton half-planes.

Note that points that are not vertically aligned are considered
unordered with respect to this relation. Points p and ¢ are
ordered p <y ¢ if either p <y qor p = ¢.

Point p is said to be between points p, and p if one of
the following sets of conditions holds. For the case where
Pa <H Py, We must have p, <y p =g ps. For the case
where py, <H pa, We must have p, <y p <g p,. For the case
where p, =g pp, we must have either p, <y p <v pp Or
py <v p <v pa. Note that a point can be between two others
without being colinear.

B. Lines

Lines in a half-plane are categorized as either “angled,”
“vertical,” or “ideal,” depending on the orientation and the X
coordinates. An angled line is characterized by its slope m
and its Y-intercept

Aa(m,b) = {{z,mz + b)|z > 0} U {{(m))}

A vertical line consists of all points having a given X
coordinate:

Av(z) = {{z,y)ly € R}

The ideal line consists of all ideal points:
Ao = {{(m})|m € R}

In comparing our geometry to Euclidean geometry, we see that
angled and vertical lines correspond to the portions of lines
in the plane having Cartesian coordinates with = > 0, while
the ideal line has no analog. Note that unlike in Euclidean
geometry, parallel lines may intersect. In particular, all angled
lines with slope m contain the ideal point {{m)}.

In electrical terms, a line corresponds to a network contain-
ing a single variable element operating over all possible values.
Examples of circuits generating angled and vertical lines are
illustrated in Fig. 3. A circuit consisting of a voltage source V
in series with the parallel combination of current source I and
a variable resistor with 0 < R < oo (circuit A) is represented
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Fig. 3. Circuits represented by lines. Each pair of circuits is equivalent.

in the Thevenin half-plane by an angled line with Y -intercept
V and slope I. Observe that the Thevenin representation of
this circuit includes ideal point ((I}), indicating that when the
resistance is infinite, the circuit reduces to a current source.
As indicated in the figure, this circuit is equivalent to one
with the current source in parallel with the series connection
of the voltage source and the resistor (circuit A’). Thus, the
Norton representation of the circuit is also a line, but with
Y-intercept I and slope V. The Norton representation of the
circuit includes the ideal point ((V)), indicating that when
the conductance is infinite, the circuit reduces to a voltage
source. A circuit consisting of a variable voltage source with
—00 < V < oo in series with a fixed resistance R (circuit
B) is represented in the Thevenin half-plane by a vertical line
with X-intercept R. As indicated in the figure, this circuit is
equivalent to one with the resistor in parallel with a variable
current source with —oo < I < oo (circuit B). Thus, the
Norton representation of the circuit is also a vertical line, but
with X-intercept 1/R.

Any pair of distinct points p and ¢ defines a line A(p, q).
The line type depends on the categories of the two points, and
on their vertical alignment:

1) Euclidean points p = (zp,yp) and g = (z4,y,) such

that z, # x, define an angled line:

A(p,q) = Aq( L2222 Zath — rby
Tqg—Tp Tq—Tp

2) Euclidean point p = (zp, y,) and ideal point ¢ =
({mg)) (listed in either order) define an angled line:

AP, q) = Mg, p) = Aa(mg, yp — mozy)

3) Vertically aligned Euclidean points p = (z, y,) and
g = (z,yq) define a vertical line: A(p, ¢) = Av(z).

4) Two ideal points p and g define the ideal line: A(p, q) =
Aco-

Distinct points p,, ps, and p, are colinear provided:

MPa> 1) = APy, D)

C. Segments

Two distinct points p and ¢ define a segment [p, g} consisting
of the set of all points on the line A(p, ¢) lying between the two
points. These points are called the endpoints of the segment.
We will refer to a segment as o, o4, etc.

Relating our segments to Euclidean geometry, a segment
with Euclidean end points corresponds to the usual definition
of a line segment. For Euclidean point p and ideal point g,
segment [p, g] corresponds to a ray directed to the right, with
origin p and slope determined by g. The segment formed by
two ideal points has no counterpart in Euclidean geometry.

As illustrated in Fig. 4, a single, variable circuit element
is represented by a segment in either the Thevenin or Norton
half-plane. A voltage source varying between Vi, and Vi,ax
(circuit A) is represented in the Thevenin plane as a line
segment along the ¥ axis having end points {0, Viin) and
(0, Vimax) indicating that its Thevenin resistance is 0. The
same source is represented in the Norton plane as a line
segment along the Ideal axis having endpoints {(Vinin)) and
{{Vimax)), indicating that it has infinite Norton conductance.
The representations of a current source (circuit B) are the
duals of those for a voltage source-either a segment along
the Ideal axis in the Thevenin half-plane or a segment along
the Y axis in the Norton half-plane. A resistor varying
from 0 to a finite value Rp,.x (circuit C) is represented in
both Thevenin and Norton planes as horizontal line segments
along the X axis. In the Thevenin plane this segment has
endpoints (0,0) and {Ryax,0), while in the Norton plane it
has endpoints{1/Rax,0) and ((0)). Note that this segment
includes all Euclidean points {z,0) with £ > 1/Ruax. If this
resistor had R.,.x = oo (i.e., an open circuit), the Thevenin
representation would still be a segment, but the right hand
endpoint would be the ideal point ((0)) and the segment would
contain all Euclidean points (z,0) for £ > Ruyin- An angled
segment with nonzero slope describes circuits such as A and
A’ illustrated in Fig. 3, but with the resistance or conductance
operating over a more limited range.

D. Sets of Points

We have already introduced two types of point sets, namely
lines and segments. As was discussed, these types of sets
represent networks containing a single variable element. When
multiple variable elements are present, we must consider more
general classes of sets.
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Fig. 4. Variable circuit elements and their representations. Each is repre-
sented by a segment in both the Thevenin and Norton half-planes.

We will consider the properties of several functions oper-
ating over points, and their generalization to functions over
sets of points. For n > 0, define an n-ary point function as a
mapping f: P® — P. Such a function is generalized to one
mapping n sets of points to a set of points as:

f(Sl7S27"'1Sn) = {f(plyp2a"'7pn) | pi € Su]- <i< n}
¢y
i.e., as the union of the mappings of all of the points in the
arguments. For the case where f is undefined for some combi-
nation of point arguments, we will say that the generalization
to set arguments is undefined if the arguments contain any
combination of points for which f is undefined.

From this definition, we can observe that such an extension
must be monotonic over C. That is, if S; C T; for all 4,
then f(S1,82,...,5,) is defined whenever f(T1,T3,...,T})
is defined, and in this case:

F(S].?SZ’“WSTL) g f(T17T27---7Tn)~

Furthermore, if f: P — P is a bijection, then so is its
extension to sets.

E. Point Sequences

Point sequences provide a notation for describing the upper
and lower boundaries of sets. A point sequence is a finite se-
quence py,ps, ..., Pk satisfying the following two properties.
First, the points are ordered left to right, i.e., p; <g p;y1 for
all 1 <4 < k. Second, distinct points are not vertically aligned,
ie., if p; =g pit1, for some 1 < ¢ < k, then p; = p;41.

Such a sequence defines a set of points consisting of the
elements of the sequence, as well as those in the segments
connecting successive elements:

B(P) = {p}u | Ips,pis]

i<i<k

Note that {p;} is included in the equation above to cover the
case where this is the only element of P. Observe that for any q
such that p; <y g <# px, there is exactly one point p in B(P)
such that ¢ =g p. Given a point g such that p; <y q <y pz,
we classify this point as being either below, on, or above point

EUCLIDEAN
Upper Contour

Lower Contour

-1.0--

Fig. 5. Contour representation of a polygon. When a pelygon includes ideal
points, the minimum and maximum points give the slope of the rightmost
lower and upper edges.

sequence P according to its vertical ordering with respect to
the point p in B(P) such that ¢ =5 p.

A point sequence is reduced provided each element is
distinct, and no 3 successive elements are colinear. Observe
that for any point sequence P, we can form a reduced sequence
P’ such that B(P) = B(P’) by simply eliminating any
duplicate elements, as well as any point p; such that p; i,
Di,» and p;4; are colinear.

Point sequence C is an upper contour (respectively, lower
contour) for set S provided every element of B(C) is in S,
and every point in S lies on or below (respectively, above)
C. Observe that if set S has both upper and lower contours,
then the initial and final elements of these contours must be
vertically aligned.

F. Convex Polygons

A set S is convex if for any distinct points p and ¢ in S, all
points in the segment [p, g are also in S. A convex polygon is
a convex set S having an upper contour U and a lower contour
L, both of which are reduced. The distinct elements of U and
L form the vertices of the polygon. The degree of the polygon
is the number of vertices. The edges of the polygon are the
segments having as endpoints successive elements of U or L,
as well as segments connecting the initial or final elements of
U and L, provided these are distinct. Observe that a convex
polygon of degree 1 has no edges; one of degree 2 has a single
edge; and one of degree k > 2 has k edges.

A convex polygon consisting of only Euclidean points
matches the usual definition of a convex polygon. As illus-
trated in Fig. 5, a convex polygon containing ideal points
must have points ((m,)) and ({m,)) as the final points in
its upper and lower contours, respectively, where m; < m,,
(in this example m; = m,, = —0.25). Such a polygon extends
infinitely to the right, having lines with slopes m; and m,, as
tangents.
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IV. THE N-T TRANSFORM

The N-T transform describes how to transform the
Thevenin representation of a circuit into its Norton equivalent,
and vice versa. It can thus be viewed as a mapping over points.
Operations of this form have been studied extensively in the
field of projective geometry, where they are used to create a
perspective drawing of an image [17].

Define the function 7: P — P as:

1) For Euclidean point {z,y) with z > 0:

(2, y)) = (1/z,y/z).

2) For Euclidean point (0, y):

({0, 9)) = ((y)).

3) For ideal point {(m)):

7(((m))) = (0, m).

This transform is defined according to the usual rules for
converting between Thevenin and Norton representations of a
circuit. For a Thevenin circuit with positive resistance Ripey,
we know that the Norton equivalent has Gpopy = 1/ Rihev
and It = Vihev/Rinev. For Thevenin resistance 0, we use
an ideal point to represent the Norton equivalent of a voltage
source. The ideal point representing the Thevenin equivalent
of a current source transforms into a Norton circuit containing
the current source and having Go; = 0.

From these definitions, we observe a number of important
properties. First, 7 is a bijection and is its own inverse, i.e.,
7(r(p)) = p. Second, T preserves vertical alignment and
vertical ordering, i.e, p <v ¢ iff 7(p)<v7(g). Third, 7 inverts
left to right ordering, i.e., p <z ¢ iff 7(¢ <y 7(p). Finally,
point p is between points p, and py, if and only if point 7(p)
is between points 7(p,) and 7(ps).

A. Transforms of Lines and Segments

Proposition:
line as follows:

For any line ), its transform ()\) is itself a

1) An angled line is transformed into an angled line, swapping
the slope and Y -intercept:

T(Aa(m, b)) = A a(b,m).

2) A vertical line with T > 0 is transformed into a vertical
line:

T(Av () = Av(1/z).

3) The vertical line with x = 0 is transformed into the ideal
line:

T(Av(0)) = Ao

4) The ideal line is transformed to the vertical line with z = 0:

T(Aso) = Ay (0).

Proof: For the case of an angled line, observe that for
any Euclidean point p = (z, mz +b) with z > 0, its transform
is given by: 7(p) = (1/2,b/z + m) = (z/, bz’ + m), for the
substitution ' = 1/, and hence the transformed point lies on
the angled line with slope » and Y -intercept m. Furthermore,
as z ranges over all positive real values, we see that z’
also ranges over all positive real values. Finally, points (0, b)
and ((m)) have as transforms {(b)) and (0, m), respectively,
completing the mapping to the line A4 (b, m).

The other 3 cases follow directly from the definition of the
transform. O

The property that the transform of an angled line is itself
an angled line can be understood in electrical terms by the
examples of circuits A and A’ in Fig. 3. These circuits are
equivalent and each is represented by an angled line in its
respective half-plane.

Proposition 2:  The transform of a segment [p, q| is given by
the segment having 7(p) and 7(q) as its end points.

Proof: Having shown that the transform of a line is itself
a line, we know that 7(A(p,q)) = A(7(p),7(g)). From this
we can conclude that 7([p, g]) C A(7(p), 7(g)). Furthermore,
a point is between points p and q if and only if its transform
is between points 7(p) and 7(g). From this we can conclude
that 7([p, q]) = [r(p), 7(q)]. o

For a segment o, we will denote its transform as 7(c),
bearing in mind that 7(c) is itself a segment having as
endpoints the transformed endpoints of o.

B. Transforms of Sets and Polygons

Many properties of sets are preserved under the transform
operator. Note also that in order to prove a statement of the
form “Property P holds for a set S if and only if P holds for
the set 7(S),” it suffices to give the proof in one direction.
For example, suppose we prove the statement “If P holds
for S then P holds for 7(S)”. Then the converse follows by
substituting 7(S) for S in the antecedent, and 7(7(S)) = §
for 7(S) in the consequent.

Lemma 1: Set S is convex if and only if 7(8S) is convex.

Proof: 'We will prove the “if”” direction, i.e., that if 7(S)
is-convex then S is convex.

Suppose that set 7(S) is convex. For any points p and ¢
in S, their transforms, 7(p) and 7(g) are in 7(S), and hence
by convexity, any point-in the segment [7(p),7(q)] is also
in 7(S). We know that this segment is the transform of the
segment [p, g], and hence any point in the segment [p, g] is in
S. a

Lemma 2: Sequence P = p,,p,,...,py is a reduced point
sequence if and only if sequence

T(P) = 7(pe), T(Dk—1)s ..., T(p1)

is a reduced point sequence.

Proof: We will prove the “only if” direction. Clearly,
7(P) is a point sequence, since the transform operator main-
tains vertical alignment and reverses left to right ordering.
Furthermore, if successive elements of P are distinct, then
their transforms are also distinct. We can see that no three
successive points in 7(P) can be colinear, because otherwise
the corresponding elements in P would also be colinear. [
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Lemma 3: 7(B(P)) = B(r(P)), for any point sequence P.

Proof: This follows by the definition of B(P) and the
fact that the transform operator applies to segments. O

Lemma 4: If C is an upper (respectively, lower) contour for
S, then 7(C) is an upper (respectively, lower) contour for 7(S).

Proof: We have just shown that 7(B(C)) = B(7(C)),
and hence every point in B(7(C)) is in 7(S). Furthermore, the
transform operator preserves vertical alignment and vertical
ordering, and hence if point p is on or below (respectively,
above) C, then 7(p) is on or below (resp., above) 7(C). 0O

Theorem 1: S is a convex polygon of degree k if and only if
7(8S) is also a convex polygon of degree k.

Proof: Given that S is a convex set with upper and lower
contours U and L, we can see that 7(S) is a convex set having
upper and lower contours 7(U) and 7(L). O

Given a representation of a convex polygon in terms of
its upper and lower contours, we can easily compute the
transform of this polygon. The upper and lower contours
of the new polygon are computed by simply applying the
transform operator to each element in the original contours,
while reversing the ordering of elements in the two sequences.

V. POINT ADDITION

Point addition describes the effect of combining networks
in series (given their Thevenin representations) and in parallel
(given their Norton representations).

For points p and ¢ their sum, denoted p + ¢ is defined as:

1) For Euclidean points p = (z,p) and ¢ = (z4,Yq)*

p+q = (2p+Tg,Up+ Ya)

2) For Euclidean point p and ideal point ¢: p+¢ =g+p =

q-

3) For ideal point p: p +p = p.

4) For distinct ideal points p and g: p + g is undefined.

This definition follows from the rules for combining net-
works in series or in parallel. For points in the Thevenin
half-plane, adding Euclidean points corresponds to the rule
that voltage sources and resistances combine in series by their
sums. Adding a Euclidean point to an ideal point corresponds
to case where a current source is placed in series with a voltage
source and a resistor, forcing the branch current to be that of
the current source. Adding two ideal points corresponds to
placing two current sources in series. This is allowed only for
identical current sources.

For points in the Norton half-plane, adding Euclidean points
corresponds to rule that current sources and conductances
combine in parallel by their sums. Adding a Euclidean point
to an ideal point corresponds to case where a voltage source
is placed in parallel with a current source and a conductance,
forcing the branch voltage to be that of the voltage source.
Adding two ideal points corresponds to placing two voltage
sources in parallel. This is allowed only for identical voltage
sources.

A. The Minkowski Sum of Convex Polygons

As we generalize from points to convex polygons for
representing variable networks, we extend addition to polygons
according to (1), thus describing the effect of combining

9a

Oy + Op

Fig. 6. Preservation on convexity by Minkowski sum. The segment con-
necting the sums of pairs of points from the arguments must lie within the
parallelogram formed by summing the segments connecting the argument
points.

variable networks in series or in parallel. That is, we sum point
sets S, and Sy as Sq + Sp = {Pa + Do | pa € Sq and py €
Sp}. The operation of summing two point sets in Cartesian
geometry is commonly called the Minkowski sum. It can be
shown that the Minkowski sum of two convex sets is itself
convex. [9]. Fig. 6 provides the intuition behind this argument.
Suppose set S is formed as the Minkowski sum of convex
sets S, and Sj. Any points p and g in S can be written as
p =P+ pp and ¢ = ga + Gbs with pg and pp in S, and with
¢o and g, in Sp. Given the arguments are COnvex, we must
have that segments o, = [pa,da] and 05 = [Pb, go) lie within
sets S, and S, respectively, and therefore their sum must lie
within S. As the figure shows, the sum of these two segments
forms a parallelogram that includes the segment [p, g), and
hence this segment must lie within set S.

With our inclusion of ideal points, the sum operation is
partial, ie., it is not defined when the two argument sets
contain distinct ideal points. For the cases where it is defined,
however, the same reasoning can be used to show that the sum
of two convex sets is convex.

The following method can be used to compute the
Minkowski sum of two convex sets in Cartesian geometry
[10]. Define a boundary point p of a convex set S as one
such that there is some segment containing p that intersects
S only at p. Every other point of S is an interior point. For
every point p on the boundary of a convex set S, there is at
least one line tangent to S at p, i.e., a line whose intersection
with S includes p, and possibly other boundary points, but no
interior points. A key property of the sum of two convex sets
S, and Sy, illustrated in Fig. 7, is that for any point p on the
boundary of S, + S, there are boundary points p, and pp in
S, and Sy, respectively, such that p = Pa + Pb- Furthermore,
if there is a line of slope m tangent to S, + S at p, then the
points p, and p; can be chosen such that there are lines of
slope m tangent to S, and Sp at points p, and p,, respectively.
Thus the boundary for S, + S, can be computed by sweeping
a pair of tangent lines clockwise around the two arguments
in parallel. For each pair of points p, and p;, encountered we
include p, + py as a boundary point in the sum.
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Fig. 7. Addition of convex sets. The boundary of the sum can be formed by
sweeping around the arguments with a pair of parallel tangents.

Fig. 8. Addition of convex polygons. Only tangents corresponding to the
argument edge slopes need be considered.

When the two arguments are polygons, the method becomes
even simpler, as illustrated in Fig. 8. We need only consider
tangents having slopes corresponding to the edge slopes, and
we can emit an entire edge of the result at a time. From this
we can see that the Minkowski sum of two convex polygons
of degree k, and k; must itself be a convex polygon of degree
less than or equal to k, + kp.

When the argument polygons contain ideal points, the key
property described above still holds, and hence the same basic
method can be used to compute their sum. Of course, we
must take care to deal with the fact that the sum of two
polygons may be undefined. Furthermore, we must deal with
the degeneracy of addition by an ideal point—it maps any set
of Euclidean points into a single point.

B. Offset Representation of Point Sequences

We will present a version of the polygon summation algo-
rithm that works for polygons represented by upper and lower
contours and possibly containing ideal points. In our algorithm,
the upper and lower contours of the sum are computed from
the upper and lower contours of the operands. A contour is
viewed as a series of segments connected at their endpoints.
The set of segments forming the upper (respectively, lower)
contour of the sum is generated by merging the sets from the
arguments in a particular order. This process is more readily
described by considering each segment to have an orientation
and a length, but viewing the endpoints as being translated
freely. Consider points p and ¢ such that p < ¢. Define their
difference, denoted ¢ — p as:

1) For Euclidean points p = (zp, ), and ¢ = (Zq,Yq):

q—p = (Tg— Tp,yg — Yp)-

2) For Euclidean point p and ideal point ¢: ¢ — p = gq.

3) For ideal point p: p — p = (0,0).

4) For distinct ideal points, their difference is undefined.

Observe that (¢ — p) + p = ¢, and that two segments
[p1,q1] and [ps,gs] having the same orientation and length
will have ¢ — py = ¢2 — py. Thus the difference opera-
tion provides a means of “normalizing” line segments with
respect to translation. We will consider a point p such that
(0,0) <g p as representing the normalized segment [{0.0), p],
and consequently define its slope u(p) as the slope of the line
A((0,0),p).

An offset sequence is a series of points p;;81,82,...,0k_1
not containing two distinct ideal points. Such a sequence
defines a point sequence p1, P2, - - . , Pk+1, Where p;+1 = pi+6;
for 1 < ¢ < k. For the special case of £ = 1, both the offset
sequence and the resulting point sequence consist of the single
point p;. Observe that we can construct an offset sequence
corresponding to a point sequence by letting &; = p;+1 — pi
for 1 < i < k. Thus, we will view an offset sequence as an
alternative representation of a point sequence.

An offset sequence defines a reduced point sequence if and
only if the following properties hold:

1) There are no elements of the form &; = (0, 0).

2) If point p; is an ideal point, then k& = 1.

3) Point §; is not an ideal point for any 7 < k£ — 1.

4) There are no successive points §;_; and é; such that

w(éim1) = w(6s).
Observe that an offset sequence can be reduced by eliminating
any elements of the form é; = (0,0), by eliminating any
elements beyond an ideal point, and by replacing any pair of
elements §;_; and §; for which p(6;_1) = p(8;) by the single
element 6;_; + 6;. This reduction is equivalent to reducing the
corresponding point sequence.

A reduced point sequence having offset representation
p1;61,09,...,0k—1 is said to be convex upward (respec-
tively, downward), provided u(6;—1) > p(6;) (respectively,
w(di—1) < wp(8;)) for all 1 < ¢ < k. An arbitrary point
sequence is convex upward (respectively, downward), if its
reduction is convex upward (respectively, downward).

C. Addition of Polygons

Given two convex polygons S, and Sp the following
algorithm computes the upper and lower contours of the sum
S + Sy from the upper and lower contours of S, and Sp.

Suppose that reduced point sequences A and B are the
upper contours for S, and S, respectively. These contours
are convex upward. Let their offset sequence representations
be ay;aq,a,...,0k, -1, and bl;ﬂhﬁz,---,ﬂkbﬁ—h respec-
tively. Their convex upward sum, denoted A + B is de-
fined as long as ag,-1 and fk,_; are not distinct ideal
points. This sum is the point sequence having offset se-
quence representation a1 + by, 61,62, . .., 6k, +k, —2 Where the
sequence 41, ..., 0k, +k,—2 i an interleaving of the sequences
Qa1,...,0k,~1 and Gy,... -,ﬂkz.—h such that 6;_; > §&; for
1 <4 < kg + kp — 2. In computing this sum, we effectively
implement the tangent sweeping method described earlier for
the upper boundary of the sum of two convex polygons. The
interleaving of argument edge segments in decreasing order
of slope matches the order edges would be encountered if
we started with vertical lines at the left hand sides of the



694 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 41, NO. 11, NOVEMBER 1994

EUCLIDEAN

IDEAL

l.OT

%, eliminate

mergc ,'
e N
/
VAR G

Fig. 9. Tllustration of contour addition. Upper contours are summed by
merging their segments in descending-slope order.

arguments and swept clockwise until the tangents were verucal
lines on the right hand sides of the arguments. Thus A ¥B
forms the upper contour for S, + Sj.

Fig. 9 illustrates the process of adding two contours. The
upper part of the figure shows the argument contours C'4 and
Cp, as well as their sum C4y ; Cp following its reduction.
The lower shows how this reduced sum is computed. First,
the two argument contours are converted into segment lists in
descending-slope order. Next, these segments are merged into
a single list. This list represents the contour C4 + Cp. We
can compute a reduced sum by simply merging any segments
having equal slope (e.g., the case labeled “merge”) and by
eliminating any segments beyond the first ideal point (e.g., the
case labeled “eliminate™).

For convex downward point sequences A and B, their
convex downward sum, denoted A t B, is defined under
the same conditions and in the same fashion, but with the
offset elements ordered 6;_; < §;. Clearly, A ¥ Bis
convex downward. If A and B are lower contours for con-
vex_sets S, and S such that S, + Sy is defined, then
A + B is the lower contour for S, + S,. Observe that
computing this sum implements the tangent sweeping for
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Fig. 10. Circuit and its series-parallel decomposition. This decomposition
characterizes the circuit at D with respect to ground.

the lower boundary, where the tangents start at the left
hand sides and sweep counterclockwise to the right hand
sides.

These results yield an efficient algorithm for computing the
sum of a convex polygon having upper and lower contours
U, and L, with a convex polygon having upper and lower
contours Uy and Ly. First, we determine if the sum is defined,
by comparing the final elements of contours U, and L; as well
as those of contours L, and Uy. If either of these pairs consist
of distinct ideal points, then the sum is not defined. 2 Otherw1se
compute the upper contour as the reductlon of U, " Uy, and
the lower contour as the reduction of L, + L. For argument
polygons of degrees k, and ks, this algorithm has complexity
O(k, + k), and the resulting polygon has degree less than or
equal to kg + ke.

VI. NETWORK ANALYSIS

Now that we have developed methods to characterize
Thevenin and Norton equivalents, we can return our attention
to the task of analyzing the extreme operating conditions of
a circuit.

2Note that just these two comparisons are sufficient - we can detect whether
the nght hand boundaries contain distinct ideal pomts by comparing the
maximum of one with the minimum of the other, and vice-versa.
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Fig. 11. Derivation of Thevenin and Norton representations for example
circuit. The derivation follows the series-parallel decomposition.
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Fig. 12. Representation of example circuit as a grounded tree. By replicating
the ground node, the circuit attains a tree structure.

B
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A. Single Node Analysis

Our algorithms for the geometric transform and polygon
addition operations form the basis of a network analysis
technique for series-parallel networks. This technique is il-
lustrated for the circuit of Fig. 10 to characterize the range
of possible behaviors at node D with respect to ground.
First, we must decompose the circuit into a series-parallel
structure with one terminal being the node of interest, and
the other being ground, as shown in the lower part of the
figure. In this decomposition, the intermediate subnetworks
are referred to as Ny through N7. Based on this series-paraliel
decomposition, we derive the Thevenin and Norton poly-
gons by a sequence of geometric operations, as illustrated
in Fig. 11. Note that in this figure, the polygons labeled NN;
and 7; show the Norton and Thevenin representations for
subnetwork N;. Observe that at each step we convert to a
Thevenin representation for combining subnetworks in series
and to a Norton representation for combining subnetworks in
parallel.

Assume the circuit contains a total of n elements, of which
k are variable. The k variable elements are represented by

Fig. 13. Transformation of circuit into binary tree. High degree nodes are
split and connected by perfect conductors, while low degree nodes are
connected to ground by insulators.

_polygons of degree 2, while the fixed elements are represented

by single points. Each time two polygons are summed, the
resulting polygon has degree less than or equal to the sum
of the argument degrees. For the special case where one of
the arguments is a single point, the resulting polygon has
degree less than or equal to the degree of the other argument.
The N-T transform operator produces a polygon with the
same degree as its argument. Thus, the polygon describing
the entire network has degree at most 2k. In the circuit of
Fig. 10, for example, the final result is a pair (Thevenin
and Norton) of polygons of degree 6, slightly less than the
maximum degree of 8 achievable for a circuit with 4 variable
elements.

The series-parallel decomposition of an n-element circuit
can be represented as a tree with n leaves (corresponding to
the elements), n — 1 internal nodes (each representing a series
or parallel combination), and 2(n — 1) edges. To construct the
Norton or Thevenin representation of such a network requires
at most n — 1 addition operations (one per internal tree node),
and 2n — 1 transform operations (one per edge, plus one at the
root). For a network with k variable elements, no polygon has
more than 2k vertices, and hence each polygon operation has
time complexity O(k). Therefore, the worst case complexity
of analyzing such a circuit is O(nk), which in turn is at worst
O(n?).

B. Grounded Tree Networks

In potential applications of this analysis, we may wish
to characterize the range of behaviors for multiple circuit
nodes. One approach would be to derive a series-parallel
decomposition for every node with respect to ground and
analyze each such case separately. This approach would have
worst case complexity O(n?k) to analyze all nodes in a
network with n elements of which k are variable. On closer
inspection one finds that much of this complexity is due to
repeated analysis of the subnetworks.
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procedure TreeAnalysis(node Root):
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{ Store Thevenin representation of every node in grounded tree circuit. }

ScanSubtrees(Root)
CombineUpDown(Root, {{{0)})

function ScanSubtrees(node N): thevPoly

{ Return Thevenin representation of circuit formed by subtree with root N.
Store representations of left and right subtrees for later use. }

if N is ground then return {{(0, 0)}
else

ThevLeft(N) « TLeftBranch(N) + ScanSubtrees(LeftChild(N))
ThevRight(N) « TRightBranch(N) + ScanSubtrees(RightChild(V))
return Thevleft(%v) || ThevRight(\V)

procedure CombineUpDown(node N, thevPoly ThevDown)
{ Store Thevenin representation for every node in subtree with root N.
Argument ThevDown gives Thevenin representation of everything but subtree. }
if N is ground then Thev(N) — {(0, 0)}

else

Thev(N) « ThevDown || ThevLeft(N) || ThevRight(V)
ThevDownLeft « TLeftBranch(N) + (ThevDown || ThevRight(N))
CombineUpDown(LeftChild(N), ThevDownLef?)

ThevDownRight « TRightBranch(N) + (ThevDown || ThevLeft(\V))

CombineUpDown(RightChild(¥V),

ThevDownRight)

Fig. 14.  Analysis of grounded tree. The algorithm computes the Thevenin representation for each node with respect to ground.

For the special case of “grounded tree” networks, we can
exploit the circuit structure to analyze the circuits for all
nodes in time O(nk). This class of networks obeys the
following restriction: the circuit graph becomes acyclic when
all branches connected to ground are eliminated. By selecting
an arbitrary node as root, such a circuit can be drawn as a tree,
where the ground node is replicated for each connected branch.
Fig. 12 illustrates the tree structure for the example circuit
shown in Fig. 10. This class of circuits also has the property
that for every node in the circuit there is a series-parallel
decomposition for the node with respect to ground.

In developing an algorithm for grounded-tree circuits, we
can make simplifying assumptions about the tree representa-
tion of the circuit. These assumptions simplify the presentation
without affecting the asymptotic complexity of the algorithm.
In particular, we can assume that every node except ground has
exactly two children, which we will denote as LeftChild and
RightChild. Such a tree corresponds to a circuit in which the
root node Root has exactly two branches while all others have
three. We can transform the circuit into such a representation
by splitting any nodes of higher degree into multiple nodes
connected by resistors with resistance 0. In addition, any
nodes of lower degree can be augmented with branches to
ground having infinite resistance. Fig. 13 illustrates the binary
representation of our example circuit. Assuming the original
circuit had n elements, it can be seen that splitting the high
degree nodes will involve adding at most n — 1 resistors, while
expanding the low degree nodes will involve adding at most

2n resistors.> Hence, both the number of branches and the
number of nodes in the transformed circuit will be O(n).

Fig. 14 shows pseudo-code (following the stylistic conven-
tions of [15]) for the grounded tree analysis algorithm. This
code computes the Thevenin representation for every node
N with respect to ground and stores the result as Thev (N).
Alternatively, a similar technique could be used to compute
the Norton representations. The code expresses the algorithm
in terms of a data type thevPoly, with operations + and ||.
The + operation denotes polygon addition and hence computes
the series combination of Thevenin circuits. The || operation is
defined for polygons P; and P; as P || P, = 7(7(P1)+7(Ps))
and hence computes the parallel combination of Thevenin
circuits. The thevPoly representations of a short and an open
circuit are given as {(0,0)} and {((0})}, respectively.

The code assumes that the Thevenin representation of
each circuit element has been computed and stored as
TLeftBranch(N) or TRightBranch(N), according to
whether the element connects IV to its left or its right child.
The algorithm operates by traversing the circuit tree twice by
recursive routines ScanSubtrees and CombineUpDown. During
the first traversal it computes the Thevenin representations of
every subtree in the circuit. For node N, it stores intermediate
results ThevLeft(N) and ThevRight(N), giving the

3An example of a network that approaches this worst case would be a
“star” consisting of n — 1 “leaf” nodes with branches to a single “root” node.
Splitting the root would require adding n — 2 branches, while expanding the
leaves would require adding 2 branches each.
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Fig. 15. Thevenin and Norton representation of all nodes in example circuit.
By exploiting the tree structure, all of these representations can be computed
in 2 passes of the network.

Thevenin representation of each of its subtree in series with
the connecting element. It returns the parallel combination of
these two intermediate values as the Thevenin representation
of the entire subtree. During the second traversal, it combines
these intermediate results with the Thevenin representation of
the rest of the circuit, passed as the parameter ThevDown
to compute the final value for node N. It then continues
the traversal by recursively calling the procedure for its two
children. When making each call it computes the Thevenin
representation for the rest of the circuit with respect to each
child.

Observe that, with the exception of ground, a given node
N is “visited” by each of the recursive routines exactly once.
Each such visit involves only a constant number of polygon
operations. Hence, the overall complexity of the algorithm is
O(nk) for a network with n elements of which k are variable.

Fig. 15 shows the Thevenin and Norton representations of
all nodes in the example circuit, computed by the grounded tree
analysis algorithm. Observe that the Thevenin representations
for the different nodes differ markedly. Nodes A and C are de-
termined completely by the connected voltage sources. Nodes
D and E have similar forms—the Thevenin representation at E
is simply the result of adding series resistance R4 to that of
D. Since Ry is variable, the polygon is both translated left
and extended horizontally. Finally, the polygons for nodes
D and B bear little resemblance to each other. In fact, the
settings that minimize or maximize the Thevenin voltage
are quite different. This example shows how our algorithm
can efficiently characterize the range of possible operating
conditions for every node in the circuit.

VII. CONCLUSION

By characterizing the range of circuit behaviors in a geomet-
ric form, we have shown that a seemingly difficult optimization
problem can be solved by a simple and efficient algorithm. Fur-
thermore, for an interesting class of circuits we can efficiently
compute the behavior for all circuit nodes simultaneously.

As mentioned earlier, the general problem of computing
the maximum or minimum node voltages in a circuit is NP-
complete. One naturally asks how our solution technique
breaks down for circuits that are not series-parallel. It can
be shown by network tearing [16] that the effect of varying
any single element in a linear circuit traces out a straight

EUCLIDEAN

IDEAL

Fig. 16. Non series-parallel circuit example. The Thevenin representation is
still a polygon, but it may be concave.

line segment in the Thevenin or Norton half-planes. Thus, the
range of all possible operating points must still be a polygon.
However, the polygon can potentially be concave. Fig. 16
shows an example of a circuit having a concave polygon for its
Thevenin representation. Furthermore, there is no simple way
to express the network analysis task as a series of geometric
operations. Perhaps the most promising avenue of research is
to find an algorithm that approximates the range of behaviors
for an arbitrary circuit by a polygon that forms a superset of
the actual set of realizable values.
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