Proceedings of MIDCON °84, 1984

HIERARCHICAL LOGIC COMPARISON

Ron Ellickson

J.D.

Tygar

Valid Logic Systems, Inc.

INTRODUCTION

Loglc comparison determines if two
circuits are identical, and identifles
the differences if they are not. 1t 1is
most commonly used for comparing
clrcuits derived from IC 1layouts with
their intended schenmatics.

Historically layout to logic
comparison was done by hand. L.arge
plots were traced by hand and manually
compared with the schematics. This
method was tedious aund error—prone.
Several years ago programs were
developed that could extract a netlist
(Lin various forms) €from an IC layour.
This eliminated one source of error.
Later, programs appeared that could

compare the netlist extracted from the
layout with a manually-entered netlist.
This reduced the possibility of
comparison errors, but depended on the
quality of the translation from
schematlic to netlist. Now we have
programs that capture the schematic of
loglc diagrams. Both the layout and the

intended s8chematfic are available in
machine readable form; comparison
programs should require no additional
data.

. Early circult comparison techniques
compared “flat" representations of the
circuitry, ignoring hierarchy i1in the
design process. As loglc designs and IC
layot:ts became larger the compariscn
task becane nore difficult, since
comparison was CPU 1intensive and the
data required increasing amounts of disk

space. Even when comparison vas
computationally feasible, the lack of
hierarchy made {t difficult to 1isolate

even very simple errors such as a
power-ground short on large circuits,
since the short could have occured in
any subcircuit using power and grouad
nodes. In addition, the presence of a
single error could render many other
error vreports spurious, and propagate
errors far out of proportion to the
magnitude of the original problem.
Hierarchical «circult comparison 1s a
technique which solves these problems.

SYSTEM INTERFACE GUIDELINES

in older design verification

systems, loglc designs were entered as
netlists. This was not the optimal
method, since it 1{is harder to read a
netllst than a circuit schematic.
Hodern systems allow schematics to be
entered directly with a graphics editor.

Schematic Input

As an example of schematic {input,
the logic diagram for a circult could be
entered like thisg:

VDD

I HE

INLx

—

INL, INg,
i GND

Logic Diagram

This schematic shows a NMOS
inverter connected to a HAND gate. \WNote
that the schematic serves three
purposes: it shows how the circuit
works, 1t documents the <circuit for
future reference, and it speciftes the
desired circutit for purposes of
comparison.

When the schematic 1s saved the
schematic edltor automatically produces
a netllst that can be read by other

programs. llere i3 the netlist for this
circutt:

NETS

"vVpD"

“GND"

"INL1"
"INL*"
"IN2"
"UNNAMEDS1 "™
"UNNAMEDS$2 "

NSO DN N

B

ELEMENTS

DEPL s” 1 D" 4 "G" &4
DEPL "s" 1 "D" 6 “G" 6
ENH "s" 2 "D" 4 "G" 3
ENH "s" 7 "D" 2 “G" 5
ENH "8" 6 "p" 7 "G" 4

Note that this netlist {s made up
of a 1list of elements. These elements
can be either primitives, such as FETS,
or nore coaplex subelircuits. One
benefit of this type of netlist is that
the format 1s the same whether it is
created from a flat schematic, a
hierarchical schematic, or several
schematics compiled into one -- which 1is
necegssary 1f a single system is to be
used with different design styles and
nethodologies.

IC Layout Input

The layout shown below corresponds
to the logic diagram shown above.

O} uvop]

O] onp O

NMOS Layout of NAND and Inverter

A netlist can be extracted fron

this layout by a circuit extractor.
Note that the extractor must be
hierarchical to support hierarchical
conmpare. (Also, hierarchical extract {is

faster and wuses less disk space than a
flat extractor.) If the subcircuits are
extracted with pins then the extractor
can generate netlists in the same format
as the logic diagranm.

However, the use of hierarchy
introduces some restrictions on a user”s
design style. Once a cell has ©been
completed and independently verified,

the geometry placed over the cell should
only 1include items which do not change
the netlist of the cell. Otherwise, the
cell will need to be re—extracted.

ALLOWABLE NON-ISOMORPHISM

We sometimes want to report
netlists as equivalent even when they
are not Identical, For example, one

might wish to specify that two pins on a
device can be swapped. These features
can not be supported without a
hierarchical design system.

Swapping Pins

In most MOS devices the drain and
souce are interchangeable. 1In fact the
1IC layout extractor that the authors use
labels the first FET terminal it
encounters the drain and 1labels the
second terminal the source. The
extractor may pick an assignment of
labels different from the MOSFET in the
schematic. To handle this situation
correctly, the compare program must
allow drain and source pins of FETs to
be matched.

Our compare program allows this by
attachling swap-properties to the pins of
the device. For example, on a FET the
drain pin would have two properties: the
first property {s SIG-NAME=DRAIN and the
second property is SWAP=SOURCE.
Likewise the source pin would have the
following properties: PIN-NAME=SOURCE,
SWAP=DRAIN.

We generalized the swap of drain
and source to swapplng of arbitrary pins
on any element. For example, suppose a
designer wishes to allow swapping the
inputs on a 3 input AND gate which has
faputs A, B, and C. Then he would

attach the following properties to the
pins:

INPUT PIN A: INPUT PIN B: INPUT PIN C:

PIN-NAME=A;

PIN-NAME=B;
SWAP=B|C;

PIN-NAME=C;
swapr=alc;

SWAP=A|B;

The logic representatfon of this nand
gate could look like this:

PIN-NAME=A
SWAP=B:C
PIN-NAME=B]
X) PIN-NAME=OUT
SWAP=A'C
PIN-NAME=C
SWAP=A'D

Three Input NAND Gate

Note that it s necessary to have a
hierarchical netllst 1f you want to

allow swapping of pins in anything other
than the lowest level primitives.

Swapping Sections

Another kind of
commonly uged in
section swapping. In the example bhelow
there {s a subcircuit that has two
l1dentical “sections” 1in 1it. Since the
sections are 1identical, it should not
matter which one 1is wired. Section
swapping 1is implemented with properties
in much the same way as pln swapping.

swapping that {is
design 18 called

PIN-NAME=A _{ | : PIN-NAME=C
PIN-NAME=B |1
PIN-NAME=D _-ﬁ : PIN-NAME=F
PIN-NAME=E | |

SECTION-GROUP=(A, B, C) (D, E,

Swappable Sections

This property states that the first
section 1in the subcircult has pins: A,
B, and C. The second section has pins
D, E, and F. It also implies that 1if
the two sections were to be swapped then
Pin A would be swapped with pin D, pin B
would be swapped with pin D and pin C
would be swapped with pin F. This
technique can also used for subcircults

that have more than two swappable
sections.
In the current implementation of

the program it 1is not possible to use
both pin swap and section swap on the
same 1level of the hierarchy. If you
wish to use both then one must be used
on one level and the other on a
different level. Then the circuit can be

flattened with a netlist compiler and
compared.

OVERVIEW OF THE ALGORITHM

Hierarchical organization of the circuit
speeds up the action of the compare
program significantly. But at each
level of hierarchy, the compare program
still needs to check that the two
designs are the same. Horeover, in some

cases the clrcults wmay be the same while
their hierarchical degscriptions are
different; in these cases the designs
must be flattened and then compared.

The compare program won"t be fast
unless we can coumpare flat levels of
hierarchy quickly. This is very similar
to the famous open problem in computer
sclence: to find an algorithm to quickly
check whether two graphs are isomorphic,
{.2., whether two sets of abstract
objects called vertices are connected in
the same way. Much effort has been
expended but the general case of this
problem has net yet been solved.

The Solution to an "Impossible” Problenm.

Fortunately, circuits don"t display
the same generality that mathematical
graphs have. There are only a small
nunber of pins on every component
compared to the number of pins in the
whole circuit. With this general
restrictlion in miad, we have developed a
fast isomorphism test for circuits.

The method depends on random
hashing functions. To see how this
works, 1imagine someone gave you two

netlists and asked you {f they are

tdentical. The first thing you might do
is count the transistors per node, and
discover there is exactly one node 1in
each circuit with 17 transistors
attached to it. Since there is only one
such node 1in each circuit, these two
nodes must correspond to each other 1f
the circuits are identical.

The sgame is true of any other
structural ©property of nodes. 1f the
property depends only on the connections
and i1f only one node in each circult has
the property, then the nodes in the two
circuits must match., It does not matter
what the property s, so long as it only
depends on the connections of the
network. We therefore pick a function
(called a "hash" function) that gives a
wide range of values for typical
circuits. 1If the circuits are identical
we get the same values out of both
circuits, and every number that appears

once Iin each circuit identifies another
match. If the circuits are not
identical then gsome unmatched numbers

will appear.

This process is fast, but 1t does
not fiond all matches. If four nodes in
each circuit come up with the same value
(say 7) then we don”t know which nodes
match. You can solve this problem by
picking another hash function at random.
This néw function will probably give
different results for the nodes that had
the same result on the previous step.
If not, you can try again with yet

another randomly chosen
If two nodes ever get distinct hash
values, you know they can”“t match. If
several applications of this process do
not distinguish the pair of nodes you
can guess that the two nodes will match.
If you guess correctly, {t 1is easy to
verify your answer by constructing the
matching relatifon based on the results
of the hash function.

How many distinct hash functions
must one try before one is guarranteed
that the guess will be good? The answer
is provided by a famous conjecture in

hash function.

number theory, the Extended Riemann
Hypothesis (ERH). This 1s the sgame
conjecture that allows computer

scientists to quickly determine whether
a given integer is prime or composite.
ERH states that it is sufficient to test
2 log N different hash functions where N
is the number of nets plus the number of
nodes. ERH has been verified for 1its
first 250,000,000 instances; so
regardless of its truth it is applicable
for all conceivable designs.

CONCLUSION

You can compare flat netlists; but
1f you wuse hierarchy then you win the
following benefits:

Executlion {s faster.

Incomplete designs can be compared.

Brror reporting is localized.

Advanced constructs such as
swappable pins and swappable sections
can be used.

]

(1]

(2}

(31

(4]

(5]

(61

7]

(8]

(9]

BIBLIOGRAPHY

E. Bach. "What to Do Until the
Witness Comes: Explicit Bounds

for Primalicey Testing and -
Related Problems.” UC Berkeley TR.
1983

c. Hoffman. “"Group-Theoretic
Algorithns and Graph Isomorphism.”

Springer-Verlag: MNew York. 1982
R.Karp, M.Rabin. "Randomized
Algorithms.™ 1976
E. Luks. "Isomorphism of Bounded

Valence can be tested in
Polynomial Time."

Proceedings
2lst IEEE FOCS. 1980

R. Mathon. "A Note on the Graph
Isomorphism Problem.”
Information Processing Letters.

1979

G. Miller. "Isomorphism Testing for
Graphs of Bounded Genus.,"”
Proceeedings 12th ACM STOC. 1980
G, Miller. "On the n log n
Isomorphism Technique.” Proceedings

10th ACM STOC. 1978
“Random Hashing.”
7th IEEE FOCS, 1976
R. Read, D. Corneil. “The Graph

Isomorphism Disease.”
Journal of Graph Theory. 1977

J. Tygar, R. Ellickson. "Graph
Isomorphism, The Extended
Riemann Hypothesis, and Netlist

Comparators.” To be publighed.

