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Abstract

This thesis reports on joint research with Michael Rabin.

Issues of operating system security occupy a central role in applied computer

science; yet there has been no satisfactory complete solution to the problem of

computer security. In the Security Toolkit Project we have developed a number

of novel interlocking techniques which can be combined in many ways to provide

tremendously enhanced security. The security toolkit, ITOSS, uses little overhead

and is flexible; a security engineer can tailor a particular configuration to exactly

satisfy the security needs demanded by the organizational structure at the site. It

opens the way for further experimental work, rapid development, and simulation of

new security schemes. The project consists of four phases: creating a new model

of security, implementing the model by modifying UNIX (4.2 BSD) on a SUN-2

computer, inventing new algorithmic fences to validate the software by insuring

that security violations are computationally infeasible, and developing software to

permit easy exploitation of ITOSS’s features.
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Chapter 1

What is Security?

1.1 ITOSS

ITOSS, the Integrated Toolkit for Operating System Security, is a prototype im-

plementation of a set of tools addressing several basic security problems arising

in the design of operating systems. While this thesis is concerned with a specific

realization of these tools, the underlying model and techniques can be used in a

wide variety of operating systems. Whenever possible, this thesis will present the

methods in the most abstract form available.

1.1.1 The Security Problem

We presume two types of entities: users, denoted U1,U2, . . . , and files, denoted

F1,F2, . . . . User Ui may deploy processes to attempt to find, use, or change the

contents of file Fj. The set of possible operations a user may attempt to apply to a

file is determined by a fixed set of access types. Examples of access types are read,

and write.

Security problems revolve around the issues of permitting or denying a particular

user Ui access to a particular file Fj under an access type X.
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CHAPTER 1. WHAT IS SECURITY? 8

Broadly, security can be viewed as several layers of mechanisms designed to

enforce proper use of a given system. Here are five layers of interest to us:

Application: The ultimate purpose of an operating system is to allow users to

run application programs. The security problem at this layer is to insure that

application programs perform as required. (For example, issues of statistical data

base security, which address methods to keep users from inferring information about

specific subjects from a statistical data base, fall into this category.)

Supervision: Operating systems are manipulated by humans. At this layer,

we are concerned with providing straightforward tools must be provided which

easily allow appropriate authorities to correctly specify security conditions. Tools

may also be needed to report on actions that users take while executing programs

in the operating system. These tools may be used by managers, to specify broad

conditions which the operating system must satisfy, or by individual users, to specify

accesses permitted to individual files. These tools may be manual, requiring specific

execution, or automatic, being triggered without specific execution.

Access Control: Security issues at this layer focus on declaring the conditions

under which a file may be accessed. The primitives applied at this layer may be

used at the Supervision layer to allow broad structures to be realized.

Kernel: Abstract mechanisms provided at the access control layer must be

implemented. At this layer we are concerned with the efficient implementation of

access control structures. We also need ways of insuring that the implementation

does not contains errors which provide security holes.

Physical: Without physically securing a computer, it is not possible to insure

any higher level of security will function correctly. For example, it is meaningless

to speak of protections keeping a user from reading a file if he can simply walk

away with the disk and examine it at his leisure. Physical security implies that

all processors, peripheral devices, and wires are protected against unauthorized

surveillance and tampering.
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1.1.2 Outline of Thesis

In this thesis we presuppose physical security and concern ourselves with security

issues at the kernel, access control, and supervision layers. The tools we provide

to address these problems can also be used to help with security at the application

layer.

Chapter 2, presents an access control model which does not presume any spe-

cific structure on the set of users which can specify a broad range of security struc-

tures. The range of structures our access control model can embrace includes all

conventional security structures. This chapter describes algorithms for efficiently

implementing the access control model.

Chapter 3 describes a security tool which can monitor user activities and ar-

bitrarily extend our access control mechanism. This mechanism can provide auto-

matic actions which enforce security.

Chapter 4 explores how one could structure a front end which allows manual

supervision of security. This chapter introduces the notion of collective security

decision making. Further, it indicates how separate user activities can be made

secure by independent security structures.

Chapter 5 describes some methods for detecting some types of hidden errors

in an implementation. While these methods do not guarantee that the resulting

implementation is free of error, they have been successfully used to find bugs which

were not discovered by more traditional validation approaches.

Chapter 6 summarizes the results of building a prototype system which extended

UNIX (4.2 BSD)1 to include our security model and tools. This chapter also discuss

how this system may be used in practice.

Chapter 7 lists future work and open problems.

1See [Berkeley 84].
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1.2 Previous Work

Many researchers have attacked special parts of the operating security problem.

We will focus our attention on three approaches: (1) capability lists; (2) simple

hierarchical approaches; (3) formally verified approaches.

1.2.1 Capability Lists

Capability lists enumerate files a process may access. Since any pattern of accesses

can be stored in a capability list, they provide a very general mechanism for pro-

viding security. The most sophisticated of the security structures supported under

capability lists was provided by the Hydra operating system at Carnegie-Mellon

[Wulf-Levin-Harbison 81] which showed how wide classes of classical security prob-

lems could be addressed in a capability-based operating system.

Unfortunately, capability lists do not by themselves provide an effective solution

to the security problem since they only address the access control layer of security,

ignoring the supervision layer and kernel layer. At the supervision layer, [Lampson-

Sturgis 76] have criticized Hydra and other capability-based systems for “drasti-

cally underestimating the work required to make the system usable by ordinary

programmers.” Because of the level of detail that information must be managed,

it is difficult to correctly configure a capability-based operating system. At the

kernel layer, algorithms for manipulating capability lists require time quadratic in

the length of the lists and, as [Wulf-Levin-Harbison 81] shows, can result in high

overhead.

1.2.2 Simple Hierarchies

A completely different approach to security is to make it as simple as possible.

MULTICS is one of the most elegant and successful examples of this approach.

[Organick 72], [Schroeder-Saltzer 72]. MULTICS uses a ring structure to impose a
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hierarchy of security: very secret files, secret files, . . . , unsecret files. This approach

meets its goals but limits the range of security structures that may be imposed.

As we shall see in Chapter 3, this proves to be a serious limitation and tends to

generate security holes.

1.2.3 Formal Verification

In the formal verification approach to security, we start from the assumption that

only mathematical proof can establish that operating system code is free from er-

ror. A very simple hierarchical security system is established, and a small section

of critical code2 is formally verified to “prove” that it satisfies the conditions es-

tablished. The Department of Defense has proposed a simple model to serve as a

standard for evaluating formally verified systems. [DOD 85]

Unfortunately, the technology for establishing formal verification is not yet at

the state where a significant length of code can be verified. In the most sophisti-

cated attempt to date, described in [Benzel 84], at least seven security holes slipped

through the formal verification process. In his ACM Turing Award lecture, Ken

Thompson showed how to include a security hole which can not be detected by

any source code verification process. [Thompson 84] John McLean has shown sub-

stantial defects in the standard security model. As an example, there is nothing to

prevent such a model from spontaneously removing all security constraints. He also

points out that all available tools for verifying systems are formally unsound, that

is, one can derive false assertions from the tools. [McLean 85], [McLean 86]. (See

[DeMillo-Lipton-Perlis 79] for a discussion of limitations of formal verification.)

Even more serious, the formal verification approach introduces serious perfor-

mance degradation. A typical example is an attempt to make VM/370 secure. The

resulting operating system was so slow that even in unsecure operation data was

2This small section of code is called the “security kernel”. This terminology is confusing since

the security kernel is not necessarily related to the operating system kernel. [Jelen 85]
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transmitted slower than 100 bits/second; meeting government standards for the

maximum rate at which information could be securely transmitted. [Gold-Linde-

Cudney 84] Formal verification typically produces an order of magnitude slowdown.



Chapter 2

Pure Access Control

2.1 Privileges and Protections

From management’s point of view the issue of the security of information can be

expressed as follows: We have a group of users and a dynamically changing body

of information, which for the purposes of this work will be thought of as being

organized in units called files. Management wants to define and enforce a regime

specifying, for every user U and every file F , whether U is allowed to access F .

We view the security problem in the context of an operating system. In this

environment the files reside in some kind of memory (usually in secondary storage

from which they are called on demand). Users have computing processes acting on

their behalf.

Thus the security problem is reduced to being able to specify for every process

P present in the system and every file F whether P will be allowed to access F
and being able to enforce the specified regime. On the most general level, such a

regime can be specified and enforced in one of the following two equivalent ways.

We can create and maintain an access matrix M in which M [i, j] = 1 if and only if

process Pi is allowed access to file Fj. [Lampson 74] Alternatively, each process Pi

may be provided with a capability list Li = (j1, j2, . . .) so that Pi may access Fj iff j

13



CHAPTER 2. PURE ACCESS CONTROL 14

appears in Li When a process attempts access to a file, the operating system checks

the access matrix or the capabilities list to see if this ought to be permitted. The

dynamically changing nature of the ensembles of processes and files and the large

number of objects involved render such a regime difficult to specify and inefficient

to enforce.

Our approach is to approximate this most general scheme by associating with

every process P privileges V and with every file F protections T . Access of P to F
is allowed if V satisfies (is sufficient for overcoming) T . We shall do this so as to

satisfy the following criteria:

1. The privilege/protection structure must be sufficiently rich to allow mod-

elling of any access-control requirements arising in actual organizations and

communities of users.

2. A formalism must be available so that users can rapidly and conveniently

specify appropriate privileges for processes and protections for files.

3. There must be a rapid test whether a privilege V satisfies a protection T .

When thinking about access of a process P to a file F , we actually consider

a number of access modes. For the purpose of this work we concentrate on the

following modes:

1. Read

2. Write

3. Execute (i.e. run as a program)

4. Detect (i.e. detect its existence in a directory containing it)

5. Change Protection
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(Of these modes, Read, Execute, and Detect are designated as non-modifying, while

Write and Change Protection are designated as modifying.)

The total privilege/protection structures are split into five segments, one for

each of the access modes. Thus a process P has five privileges (Vrd, Vwr, Vex, Vdt, Vcp)

associated with it, where Vrd is the read privilege, Vwr is the write privilege, etc.

Similarly, a file F has five corresponding protections (Trd, Twr, Tex, Tdt, Tcp) associ-

ated with it. When process P makes a system call to read F , the system will check

whether Vrd satisfies Trd before allowing the access. The other access modes are

handled similarly.

From now on we shall treat just a single privilege protection pair 〈V, T 〉, which

can stand for any of the pairs 〈Vrd, Trd〉, etc. In fact, 〈V, T 〉 can stand for 〈VX , TX〉,
where X is any additional access mode that an operating system designer may wish

to single out.

As will be seen later, each privilege and protection have a finer detailed struc-

ture. Thus a privilege VX , where X is one of the above five modes of access, will

have several components.

2.2 The Tree of Securons

The basic atomic units out of which all privileges and protections are composed are

nodes, called securons, of a specific tree. Since customers such as government de-

partments or corporations, usually have tree-like hierarchical organizational struc-

tures, the tree of securons is a natural domain into which to map the desired security

structure of the organization in question.

Definition 2.1 The securon trees of width n and depth h is the set str(n, h) of

all strings 0.i1.i2. · · · .ik where ij ∈ [0 . . n − 1], and k ≤ h.

If x, y ∈ str(n, h) and 0 ≤ i ≤ n− 1, then y is the ith child of x if y = x.i. The

strings x and y are related if x is an initial sequence of y (denoted by x ≤ y) or
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y ≤ x.

The depth of the securon x = 0.i1. · · · .ik is d(x) = k.

In every particular implementation of a specific tree str(n, h) is used. In the

current version of ITOSS, n = 256 and h = 15. We shall henceforth denote by str

the fixed securon tree used in the architecture of our secure system.

As a first approximation we are tempted to use the securons themselves as

privileges and protections. Thus we may assign to a manager the securon x =

0.15.19.7 and to his 15 subordinates the securons 0.15.19.7.i, 0 ≤ i ≤ 14. If a

subordinate creates a file F , then his securon y is attached as the protection T = y

of this file. A process P owned by the manager will have the privilege V = x.

We can then stipulate that when the process (P , V ) tries to access the file (F , T ),

permission will be granted only if x ≤ y (x is an initial sequence of y). We feel

that such arrangements, and their obvious extensions and modifications, are not

powerful and rich enough in structure to reflect the security structure we need. In

almost all existing security models, however, privileges and protections are linearly

ordered (public, restricted, secret, etc.), i.e., even more limited than the above

arrangement. We want to have more sophisticated objects for expressing privileges

and protections and a more flexible definition for the notion of a privilege satisfying

a protection.

Definition 2.2 Privileges are sets V ⊆ str of securons and protections T are sets

of sets of securons (i.e. T ⊆ P(str), where P(S) denotes the set of all subsets of

S).

A privilege

V = {s1, . . . , sm} , si ∈ str

satisfies (is sufficient to overcome) the protection

T = {U1, . . . , Um} , Ui ⊆ str
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if for some j, 1 ≤ j ≤ k we have Uj ⊆ V . We shall use the notation

V ⇒ T

to denote that V satisfies T .

These concepts allow us to create very detailed privilege/protection schemes.

Thus if we want to express the relation between manager and subordinates described

above, we assign to the manager’s processes the privilege

V = {0.15.19.7.i | 0 ≤ i ≤ 14},

and to files of the ith subordinate, the protection Ti = {{0.15.19.7.i}} (not {0.15.19.7.i}!)
Now V ⇒ Ti holds for all subordinates. If we wish to make subordinate 1’s files

accessible to an additional user M, we can assign to M a securon s and define

his set of securons to be VM = H ∪ {s}, where H represents privileges required by

M in other contexts. We also set T ′
1 = T1 ∪ {{s}}. Now we have V ⇒ T ′

1 as well

as VM ⇒ T ′
1. We can, in fact, realize any access matrix by means of a sufficiently

detailed assignment of privileges and protections.

2.3 Security Expressions

The above apparatus for implementing privileges and protections is indeed powerful

but, as it stands, cumbersome. If privileges V ⊆ str and protections T ⊆ P(str)

are to be specified by enumeration, then both the assignment of privileges and

protections, and the testing of whether V ⇒ T will be too difficult to be of practical

use. What we need is a formal calculus which will allow us to write quickly and

economically compact formal expressions denoting rich and complicated privilege

and protection sets. The first need is to describe large subsets of str. This will be

done by introducing securon terms which will also be the atomic terms for building

expressions.
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Definition 2.3 Let s ∈ str and 0 ≤ i ≤ j ≤ depth(str). Securon terms are:

1. s

2. s[i downto j]

Definition 2.4 The set SET (t) defined by a term t is SET (s) = {s} for s ∈ str,

and

SET (s[i downto j]) = {u | u ∈ str, u related to s, i ≤ d(u) ≤ j}

Recall that u related to s means u is an ancestor, descendent, or is equal to s.

Thus SET (0[0 downto depth(str)]) = str. And

SET (s[d(s) + 1 downto d(s) + 1])

is the set of all children of the securon s.

Definition 2.5 A privilege expression is defined by

1. Any securon term is a privilege expression.

2. If E1 and E2 are privilege expressions then so are E1 ∧ E2.

Definition 2.6 A protection expression is defined by

1. Any securon term is a protection expression.

2. If E1 and E2 are protection expressions then so is E1 ∧ E2 and E1 ∨ E2.

A (security) expression is a privilege or protection expression. Note that every

privilege expression is a protection expression but not vice versa.

We must give semantics for these formal expressions, i.e., rules for associating a

set V ⊆ str with a privilege expression, and for associating a set of sets T ⊆ P(str)

with a protection expression. We shall use the notation vpriv(E) to denote the

privilege defined by the expression E, and vprot(E) to denote the protection values.
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If t is a securon term then we want to include in the corresponding privilege

all the securons in SET (t). If E = E1 ∧ E2 is a privilege expression, we want

the corresponding privilege to be the weakest privilege stronger than the privilege

corresponding to E1 as well as the privilege corresponding to E2. This motivates

the following definition:

Definition 2.7 The function vpriv(E), giving the privilege corresponding to the ex-

pression E, is defined by

1. vpriv(s) = {s}, for s ∈ str.

2. vpriv(s[i downto j]) = {u | u ∈ str, i ≤ d(u) ≤ j} = SET (s[i downto j]).

3. vpriv(E1 ∧ E2) = vpriv(E1) ∪ vpriv(E2).

When it comes to protections, we want the protection corresponding to a term

t to be the set containing all singleton sets {u} for u ∈ SET (t). We want the

protection E = E1∨E2 to mean that any privilege satisfying E1 or E2 also satisfies

E. Finally, having the protection E = E1 ∧ E2 should mean that V ⇒ E if and

only if V ⇒ E1 and V ⇒ E2.

For sets (of sets) T1, T2 ⊆ P(str) we introduce the notation of cartesian product

given by

T1 × T2 = {U1 ∪ U2 | U1 ∈ T1, U2 ∈ T2}

Notice that T1 × T2 is again a set of subsets of str.

Definition 2.8 The function vprot(E) giving the protection corresponding to the

expression E is defined by

1. vprot(s) = {{s}}.

2. vprot(s[i downto j]) = {{u} | u ∈ SET (s[i downto j])}.

3. vprot(E1 ∨ E2) = vprot(E1) ∪ vprot(E2).
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4. vprot(E1 ∧ E2) = vprot(E1) × vprot(E2).

If V is a privilege expression and T is a protection expression then V satisfying

T (V ⇒ T ) will of course be defined to mean vpriv(V ) ⇒ vprot(T ), where the latter

relation was explained in Definition 2.2. From now on, we shall talk about privileges

and protections as either expressions or sets, and the intended meaning, when not

specified, will be clear from context.

2.4 An Algorithm for Testing V ⇒ T

The formalism of security expression developed in Section 2.3 allows us to specify,

by writing concise expressions, large, complicated privilege and protection sets. We

need an efficient algorithm for testing whether a privilege satisfies a protection. Let

V = E1∧ . . .∧Em, where each Ei is a securon term, be a privilege (expression) and

let T be a protection. Thus T = G1 ∨ G2, or T = G1 ∧ G2, or T is a securon term.

In the first case we test whether T ⇒ G1, and if this fails we test whether T ⇒ G2.

In the second case we test whether T ⇒ G1, if this fails then T �⇒ V, otherwise we

continue to test whether T ⇒ G2. Note that we adopt the so called short-circuit

evaluation mode, where irrelevant branches are not pursued.

Thus, recursively, our problem is reduced to testing whether T ⇒ t where t is a

term, say, t = s[i downto j]. The case t = s is, trivially, a special instance of the

former case. Let

T = s1[i1 downto j1] ∧ . . . ∧ sm[im downto jm].

Then T ⇒ s[i downto j] if and only if for some k, 1 ≤ k ≤ m,

SET (sk[ik downto jk) ∩ SET (s[i downto j]) �= ∅. (2.1)

To test (2.1) we introduce, for any u ∈ str and integer � ≤ d(u), the notation
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INIT (u, �) to denote the unique string v satisfying:

INIT (u, �) =

⎧⎪⎨
⎪⎩

v where v ≤ u and d(v) = �, if � < d(u)

u if d(u) ≤ �

Denote s̄ = INIT (s, i), s̄k = INIT (sk, ik). It is now readily seen that (2.1) is

equivalent to the following easily checked condition:

(sk ≤ s ∨ s ≤ sk ∨ (s̄ ≤ sk ∧ s̄k ≤ s)) ∧ ([i, j] ∩ [ik, jk] �= ∅) (2.2)

Here [i, j] denotes the interval of integers � such that i ≤ � ≤ j.

A condition of the form (2.2) has to be tested for at most every term in T and

every term in V . Hence

Theorem 2.1 We can test whether V ⇒ T holds in time length(V ) · length(T ).

Let us indicate how to improve the algorithm. It follows from (2.2) that for

sk[ik downto jk] ⇒ s[i downto j] to hold, s̄k = INIT (sk, ik) and s̄ = INIT (s, i)

must be related. By precomputing, we store the privilege V in an array

[
〈s̄1, s1[i1 downto j1]〉, . . . , 〈s̄m, sm[im downto jm]〉

]

so that for i < j,(s̄i LEX s̄j), where LEX is a binary relation specifying the lexi-

cographic ordering on strings (securons). To test whether V ⇒ s[i downto j] we

use binary search, i.e., we check whether (s̄k LEX s̄) for k = �m/2�. Assume this

holds, then we check whether s̄k ≤ s̄. If the latter does not hold, then s̄ is not

related to any s̄�, 1 ≤ � ≤ �m/2�, and the problem has been reduced by half. If

s̄k ≤ s̄ does hold, then we check (2.2), and if that fails we continue binary search

on both [1, �m/2� − 1] and [�m/2� + 1, m].

In practice, the combination of this binary search on V with the fact that the

recursion on the structure of T usually does not lead to testing V ⇒ t for every

term t in T , results in running time about linear in log(length(V )) and sublinear in

length(T ). In actual experiments, the algorithm is very fast.
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2.5 Negative Privileges and Protections

As formulated thus far, the power of privileges is monotonic, i.e., if V1 and V2 are

privilege expressions and vpriv(V1) ⊆ vpriv(V2) then whenever V1 ⇒ T it is also the

case that V2 ⇒ T . The planners of a secure file system may wish to make, in certain

instances, access to some file F1 to be incompatible with access to file F2 because

a user who possesses the combined information in F1 and F2 will have dangerous

power.

To enable planners to implement such policies, and for other potential applica-

tions, we introduce the constructs of negative protections and negative components

of privileges. The total effect will be to make the power of privileges non-monotonic.

Definition 2.9 Protections have the structure T = 〈T1, T2〉 where T1 and T2 are

protection expressions. The first and second components of T are called, respec-

tively, the positive and the negative protections of the file.

Similarly, privileges will have the structure V = 〈V1, V2〉.
A privilege V = 〈V1, V2〉 satisfies T = 〈T1, T2〉, again written as V ⇒ T , if

V ⇒ T1 and V �⇒ T2.

When talking about a privilege V = 〈V1, V2〉, we shall often use V + = V1 and

V − = V2 to denote the positive and negative components of V , and similarly for

protections.

By way of illustration, if in the above example Fi was protected in the old sense

by expression Ti, i = 1, 2, then protecting Fi by 〈Ti, T1 ∧ T2〉, and using privileges

of the form 〈V, V 〉, will exactly enforce the desired discipline.

The second component of T can be left empty and then, by convention, V ⇒ T

if V + ⇒ T+.
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2.6 Indelible Protections and Confinement

Two additional enhancements of the privilege and protection structures are needed

for addressing problems arising in file system security arrangements.

One of the modes of access to a file is the Change Protection mode which enables

the user to change one or more of the file’s protections. Since changing protections

of a file may have far reaching and sometimes unforseen consequences, we want to

have a mechanism for limiting the change of protection even when allowed.

To this end we introduce the notion of indelible security expression !E, where

E is an expression. The intention is that the indelible component of the protection

on a file cannot, as a rule, be changed by a process even if the process has Change

Protection rights with respect to that file. It will, however, be seen later that a

“bypass” exception to this preservation of indelible protections rule is needed.

Since the intention is to provide a floor below which a protection cannot be

lowered, it is readily seen that incorporation of indelible components in a protection

〈T+, T−〉 should be in the manner

T = 〈T1∧!E, T2∨!G〉. (2.3)

In this way, any modification of T+ leaves at least !E, and any modification of of

T− leaves at most !G.

The concept of indelible protections is closely related to the issue of confinement

of information. [Lampson 73] To illustrate confinement, assume that a file F has

the Read protection 〈!E, !G〉, i.e., no mutable component is present. Let another

file F̄ have the Read protection 〈!Ē, !Ḡ〉. Assume that some process P can read

F and can write into F̄ . The process P may then copy information from F into

F̄ . As matters now stand, there may be another process P1 which cannot read F
but can read F̄ . This process P1 may gain access to information in F via its copy

placed in F̄ by P . Our intention in providing indelible protections was to avoid

unforseen declassification of information in a file through change of protection. It is
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reasonable to assume that for files guarded by indelible protections, we would also

want to avoid inadvertent leakage of information in the manner described just now.

To this end we introduce the concept of confinement and a mechanism to enforce

it.

Define READS (F) by

READS (F) = {P | P can read F based on indelible privileges/protections}.

Similarly, define WRITES (F) by

WRITES (F) = {P | P can write F based on indelible privileges/protections}.

Confinement can now be formally be defined as: For any process P and files

F , F̄

P ∈ READS (F) ∧ P ∈ WRITES (F̄) → READS (F̄) ⊆ READS (F). (2.4)

Let us emphasize that only the indelible portions of the protections of F and F̄
play a role in (2.4).

The above discussions lead to natural extensions of our previous privilege and

protection structures. Our positive and negative protections will (optionally) have

indelible components so that a typical protection with have the form

T = 〈T1∧!E, T2∨!G〉 (2.5)

where T1, T2, E, and G are any protection extensions. By way of abbreviation, we

shall use the notation T = 〈T+, T−〉 to describe (2.5) so that T+ = T1∧!E1 and

T2∨!G. We shall call T1 and !E, respectively, the mutable and indelible components

of T+, and similarly for T−.

The semantics for vprot(!H) will depend on the context, i.e. on whether !H is

part of T+ or T−. We according introduce the notations v+
prot and v−

prot to mark

this distinction.
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To help simplify the specification of v+
prot(!E) and v−

prot(!G), we extend the notion

SET (t) introduced in Definition 2.4. for terms to the case of general security

expressions H. Recall that vprot(H) = {U1, . . . , Uk}, Ui ⊆ str.

Definition 2.10 For any security expression H define

SET (H) =
⋃

U∈vprot(H)

U

Thus SET (H) consists of all the securons “appearing” in vprot(H). It follows

that for a privilege expression E, vpriv(E) = SET (E).

Definition 2.11 Let H be an expression. Define

v+
prot(!H) = {SET (H)},

v−
prot(!H) = {{s} | s ∈ SET (H)},

v+
priv(!H) = vpriv(!H) = SET (H).

The intention is that in 〈T1∧!E, T2∨!G〉, !E will give maximal positive protection

and !G will give maximal negative protection. Accordingly we defined v+
prot(!E) to

be all of SET (E) and v−
prot(!G) to be it any of {s}, s ∈ SET (G).

Note that v+
prot(!E) always has the form {{s1, s2, . . .}} and v−

prot(!G) always has

the form {{s1}, {s2}, . . .}, where s1, s2, . . . are securons. For privileges, v+
priv(!E)

and v−
priv(!G) are, as before, sets {s1, s2, . . .} of securons.

We now turn to the specification of privileges incorporating indelible expressions.

Privileges for non-modifying actions (i.e. Read, Execute, and Detect) will have

components whose functions will be to enforce confinement.

Definition 2.12 Privileges for non-modifying modes of access have the form

V = 〈V1, V2, M1, M2〉 (2.6)

where V1 and V2 are privilege expressions, and M1 and M2 are any expressions. In

(2.6), V1 and V2 are positive negative components of V , and M1 and M2 are called

the positive and negative (indelible) mediating components of V.
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We must also extend the notion of satisfaction for security expressions to the

case where indelible expressions are included.

Definition 2.13 Let V be a privilege expression and T+ = T1∧!E, T− = T2∧!G be

protection expressions. Define

V ⇒ T+ if V1 ⇒ T1 and vpriv(V ) ⇒ v+
prot(E), (2.7)

V ⇒ T− if V1 ⇒ T2 or vpriv(V ) ⇒ v−
prot(G), (2.8)

In (2.7) and (2.8), the satisfaction relation on the right hand side is that of

Definition 2.2, and its extension to expressions, explained after Definition 2.8.

Definition 2.14 Let Vrd, with notation as in (2.6), and Trd = 〈T1∧!E, T2∨!G〉 be,

respectively, a Read privilege and a Read protection. We shall say that V satisfies

T (V ⇒ T ) if

1. V1 ⇒ T+,

2. V2 �⇒ T−,

3. SET (E) ⊆ SET (M1).

4. SET (G) ⊆ SET (M2).

The notation V ⇒ T is similarly defined for the other non-modifying access privi-

leges.

Definition 2.15 Let T = 〈T1∧!E, T2∨!E〉 and T̄ = 〈T̄1∧!Ḡ, T̄2∨!Ḡ〉, we shall say

that T̄ indelibly dominates T if

SET (E) ⊆ SET (Ē) , SET (G) ⊆ (Ḡ).

Lemma 2.1 If Trd = 〈T1∧!E, T2∨!G〉 and T̄rd = 〈T̄1∧!Ē, T̄2∨!Ḡ〉 are Read protec-

tions for files F and F̄ respectively and T̄rd indelibly dominates Trd, then it is the

case that READS (F̄) ⊆ READS (F).
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Proof: By definition, only the indelible components of privileges play a role in

determining READS (F) and READS (F̄). Let P be a process with (indelible)

Read privilege Vrd as in (2.6), such that P ∈ READS (F̄). Then, by definition,

vpriv(V1) ⇒ v+
prot(Ē), (2.9)

vpriv(V2) �⇒ v+
prot(Ḡ), (2.10)

SET (Ē) ⊆ SET (M1) , SET (Ḡ) ⊆ SET (M1). (2.11)

Relation 2.9 is equivalent to SET (Ē) ⊆ SET (V1) and relation 2.10 is equivalent

to SET (V2) ∩ SET (Ḡ) = ∅.
To say that T̄rd indelibly dominates Trd means that SET (E) ⊆ SET (Ē) and

SET (G) ⊆ SET (Ḡ). Hence the previous paragraph implies SET (E) ⊆ SET (V1)

and SET (V2)∩SET (G) = ∅. Also, SET (E) ⊆ SET (M1) and SET (G) ⊆ SET (M2).

Thus Vrd ⇒ Trd and P ∈ READS (F). �

Enforcing confinement means that if some process P reads F and can write into

F̄ , then READS (F̄) ⊆ READS (F) should hold. This is insured by the following

specification:

Definition 2.16 Let a process P have the Read and Write privileges V as in (2.6)

and Vwr; and a file F̄ have the Read and Write protections T̄rd = 〈T̄1∧!Ē, T̄2∨!Ḡ〉
and T̄wr. The process P will be permitted to write in F if and only if

1. Vwr ⇒ V̄wr,

2. SET (M1) ⊆ SET (Ē)

3. SET (M2) ⊆ SET (Ḡ)

Theorem 2.2 If for files F , F̄ some process P can read F and write into F̄ then

READS (F̄) ⊆ READS (F). Thus confinement is enforced.
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Proof: Let P have privileges Vrd and Vwr as in (2.6), and let F and F̄ have pro-

tections Trd = 〈T1∧!E, T2∨!G〉, T̄rd = 〈T̄1∧!Ē, T̄2∨!Ḡ〉, respectively. The conditions

of the theorem and definitions 2.14 and 2.16 imply

SET (E) ⊆ SET (M1) ⊆ SET (Ē),

SET (G) ⊆ SET (M2) ⊆ SET (Ḡ).

Hence F̄ indelibly dominates F , which by lemma 2.1 entails READS (F̄) ⊆
READS (F). �

2.7 Bypass Privileges

The introduction of indelible protections serves to enhance security by prohibiting

inadvertent change of protections and by enforcing confinement. The intention in

having indelible expressions is that they are unmodifiable even by a process does

have powerful Change Protection privileges Vcp. This strict interpretation of in-

delible protection creates practical difficulties. Clearly some carefully controlled

processes must have the ability to change even indelible protections if such pro-

tections turn out to be too strict or if, later on, there arises the possibility of

“declassifying” a file. Also, strict enforcement of confinement causes information to

flow only upward in terms of security. Pragmatic needs require exceptions to this

rule. The possibilities are realized through augmentation of the Change Protection

Privilege.

Definition 2.17 The Change Protection privilege has the structure

Vcp = 〈V +, V −, B〉

where B is called the bypass component. Let F be a file with Change Protection

protection Tcp = 〈T+, T−〉 and TX = 〈T1∧!E, T2∨!G〉 be any of F ’s protections

(X = cp included). If V ⇒ T+ and V �⇒ T− then the privilege Vcp is sufficient for
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changing the mutable components T1 and T2 in TX to any other mutable expressions.

If, in addition,

SET (E) ⊆ SET (B) and SET (G) ⊂ SET (B) (2.12)

then the indelible components !E and !G can be changed as well.

Assume that a process P has Change Protection privilege Vcp, and a file F has

Change Protection protection Tcp and another protection, say Trd, with notations

as above. If Vcp satisfies Tcp and (2.12) holds for Trd, then P could read F by first

changing Trd to 〈{∅}, ∅〉. Later P can restore Trd to its original value 〈T+, T−〉. This

motivates the following rule: Under the above conditions, P can read F ; similarly,

any other access X to F is permitted.

2.8 Gradations of Actions on Files

Until now we made no assumption about the relative strengths of protections on

a file F . If we consider the effect of various modes of access to a file, we see that

it does not make sense to have a weak Change Protection protection Tcp coupled

with a strong Read protection Trd. For a file protected in this way may be read

by first changing the Read protection Trd and then reading the file. Thus it makes

to partially order the modes of access to a file and require that protections be

correspondingly ordered.

Similar considerations apply to privileges associated with processes. Here the

privilege for the more powerful action should be weaker. A reasonable, but by

no means unique, gradation of modes of access to files is as follows. Changing

protection of a file is the farthest reaching action, for by doing this all other modes

of access can become available. Detecting the existence of a file F in a directory

D is the minimal mode of access. For if a process, for example, writes into F it

presumable knows of the existence of F . Reading and executing a file are about
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Figure 2.1: The hierarchy of access modes

equally powerful actions. For if a process P can read an executable file F then it

can copy it to an executable file and subsequently execute it. Conversely, if P can

execute F then by appropriate tracing the content of F can be fairly accurately

reconstructed. Finally, there is no clear dominance between reading or writing

into a file. These considerations lead to the semi-ordering of strengths of actions

depicted in Figure 2.8.

As explained before, protections on a file F should reflect this ordering. This

does not mean, of course, that across different files F and F̄ , the Change Protection

protection T̄cp for F̄ should be stronger than, say, the Read protection Trd for F .

A convenient way for implementation order among protections is by syntactic

means. We shall say that T̄ = 〈T̄1∧!Ē, T̄2∨!Ḡ〉 dominates T = 〈T1∧!E, T2∨!G〉 if
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for some expressions H1, H2,

T̄1 = T1 ∧ H1, T̄2 = T2 ∨ H2,

and, furthermore, T̄ indelibly dominates T , i.e.

SET (E) ⊆ SET (Ē), SET (G) ⊆ SET (Ḡ).



Chapter 3

Sentinels

3.1 Overview

The mechanisms described in the previous chapter form a pure access scheme; they

describe when a process P can access a file F but the mechanisms perform no

other action. While the pure access scheme gives us much power, there are basic

security functions that it can not support. For example, if we wanted to audit F ,

that is record the names of all users who accessed a secure file F , we would have

to either modify the operating system kernel or modify all application code that

might access F . Since modifying and testing new code would be a laborious and

dangerous process, it could only be rarely used and with great difficulty. In this

chapter we will extend the pure access scheme with sentinels. Sentinels allow us

to add features such as auditing conveniently. These features can be customized to

reflect any special needs an organization may have.

Here is how sentinel for a file F works: A sentinel S is a program listed in a F ’s

protection header. When any process P opens F , the operating system schedules

S for execution as a process. S is passed some variables that allow it to perform

various operations. The sentinel can perform arbitrary actions. For example, S

could record the names of all users accessing F .

32
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Suppose we only wished to record when a certain class of users accessed F , we

could attach a sentinel S which checked whether the user accessing F belonged to

the class. If he did, S would record the fact; if he did not, S would abort. While

this is an adequate solution, it would be even better if we could keep overhead

costs down by keeping process creation to a minimum. To allow this, we further

extend our protection header to contain a trigger condition R. S is only scheduled

for execution by the operating system kernel when F is accessed and the process

meets the trigger condition R.

Even further efficiency can be derived by separating sentinels into different

classes. For example, auditing simply requires that S make the necessary records

in the audit file when P reads F . A more sophisticated sentinel might decide to

take action only when certain records are read. For example, certain records in

a F might have a keyword secret attached to them. The sentinel S guarding

F might allow most accesses but restrict access to secret records. The first ex-

ample requires only an asynchronously running process, but the second example

requires that S be able to monitor and approve individual I/O operations between

P and F . Accordingly, we allow two types of sentinels: asynchronous sentinels

which run separately from P and funnels which “lie between” P and F . By “lie

between”, we mean that S is able to inspect and approve all I/O operations from

P to F . (Funnels are an extension of UNIX named pipes. [Ritchie-Thompson 74],

[Kernighan-Plauger 76], [Leffler-Fabry-Joy 83])

A very sophisticated attack might try to read F protected by asynchronous

sentinel S and then crash the operating system before S can perform its function.

To prevent this, we further specialize sentinels to allow Lazarus processes which

can be rerun when the operating system is rebooted.

When a sentinel S runs as a process, it must, as all processes, have some privi-

leges. One choice an implementor could pick would be to have all sentinels run as

the system user. But this would mean that we could not allow individual users to
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attach sentinels for their own purposes. To allow sentinels to be used in the widest

possible context, we give each sentinel an assigned privilege V . When the sentinels

is scheduled by the operating system, it will run with privilege V .

3.2 Semantics of Sentinels

Definition 3.1 A sentinel S is an ordered tuple 〈S, t, VS〉 where S is the name of

a file, VS is a privilege called the assigned privilege and t is the type, 1, 2, or 3

indicating that the S is

1. Asynchronous,

2. Synchronous,

3. Lazarus.

Suppose a process P with privileges VP attempts to access a file F with pro-

tections T and sentinel S. First, the operating system tests whether VP ⇒ T .

This determines whether P can access F . But regardless of the result, S can be

executed as a sentinel. The operating system checks to make sure that S exists and

is executable. If it is, S is created by the operating system with privileges V and

executes according to type t. (See section 3.3 for a discussion of types of sentinels.)

To reduce unnecessary executions of S from being activated, we would like to

express a trigger condition R specifying when S should be run by the operating

system. There are several possibilities for how we could express conditions R. We

chose to use our privilege/protection scheme for this purpose, but it is easy to

imagine other good choices for expressing trigger conditions.

Recall in equation (2.3) we saw the most general form of a protection,

T = 〈T1∧!E, T2∨!G〉. (3.1)
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Definition 3.2 A sentinel clause C is an ordered pair of a trigger R and sentinel S.

R is a protection of the form in (3.1) and S is a sentinel as defined in Definition 3.1.

We write C as R → S.

Suppose a process P with privileges VP tries to access a file F protected by a

sentinel clause R → S, where S = 〈S, t, VS〉. The operating system checks whether

VP ⇒ R. If it does, the operating system will run S.

We allow arbitrarily many sentinel clauses C1 = R1 → S1, C2 = R2 → S2, . . . to

be attached to a protection. The operating system kernel will check each Ci, seeing

whether VP ⇒ Ri, and running all the Si which match the trigger conditions.

Using this notation, we have a unified way of writing not just sentinel clauses,

but also the pure access scheme. For example, if F has protection T and clauses

C1, C2, . . . for access X we can write an extended protection for access X,

(T → ACCESSX) ∧ (R1 → S1) ∧ . . . ∧ (Rk → Sk) (3.2)

where ACCESSX means that access type X is permitted to the file.

There are three important exceptions to the above rules:

1. If S = 〈S, t, V 〉 is a sentinel, then S can be an arbitrary executable file. In

particular, S itself may be protected for Execute access by a sentinel S ′. If

S is triggered, it could lead to a chain of sentinels triggering sentinels — or

even an infinite loop of sentinel scheduling. To prohibit this, we specify that

a sentinel can only be triggered by a process P which is not a sentinel.

2. If a funnel sentinel S guards a file F in its Change Protection protection,

it can approve or disapprove each attempted action on F . In particular, it

could prevent any process from changing F ’s protection. Since the sentinel S

is part of F ’s extended protection, S could never be removed. To prevent this,

sentinels are not allowed to be attached to Change Protection protections.
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3. We allow individual users to attach sentinels to files. A user might try to

violate confinement by attaching sentinel S = 〈S, t, VS〉 to a confined file F .

S runs with privileges VS as a sentinel. In particular, if VS does not have an

indelible (mediating) component S can copy data from the confined file F
to an unconfined process F ′. In the pure access system, a process could not

“leak” information because a process that was able to read F would not be

able execute S. To protect confinement, we require that process P accessing

F protected by S must have privileges sufficient to execute S.1

3.3 Types of Sentinels

As indicated above, there are three types of sentinels: asynchronous, funnels (also

called synchronous), and Lazarus. This section discusses technical issues related to

the different types of sentinels. When process P triggers sentinel S = 〈S, t, F 〉 by

accessing F , it is passed certain information through environment variables:

1. the name of P ,

2. P ’s privileges,

3. the name of F ,

4. F ’s protections,

5. parameters to the system call accessing the file,2 and

6. whether access was permitted by the pure access scheme.

1Notice that a sentinel knows whether it is executed as a sentinel or as an ordinary program

by checking whether its privileges are PV or those of an ordinary user.
2ITOSS I/O calls include read, write, seek, chmod, chprot, exec, unlink, close,

open or stat. However, the call starting a sentinel can not be read, write, or seek because

these are only meaningful to open files.
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If the S is synchronous its input stream is triggered whenever P attempts to

access F . The data on the input stream to S contains the parameters of the I/O

call to F . While S executes, the process P sleeps. S can perform arbitrary actions

on the input parameters. S writes data to its output stream. That data forms the

actual parameters used in the I/O called. If S writes a null field, the I/O call is

refused. When the I/O call returns, the value is passed to S. S can then alter the

return value. S then sleeps while P continues. If several synchronous sentinels are

triggered by one access, the I/O calls are passed to the sentinels in the same order

they were triggered.

If S is Lazarus, a simple reliability mechanism is provided which protects sen-

tinels from attacks which rely on crashing the system to avoid auditing. When S

is triggered, a file system entry E is entered in non-volatile memory before access

to F is permitted. When S terminates normally, E is removed. However, if the

operating system should crash or S is manually terminated, the entry E remains.

When the system reboots, the boot procedure can detect E and retrigger S.3

3.4 Examples

We envision that a library of sentinels would provide basic security for most uses.

This library could be supplemented by a small number of specially written sentinels

for more complicated situations.

Here are just a few examples of how sentinels can be used. Some computer

terminals have an identify sequence. When the terminal is polled with a particular

sequence of ASCII characters, it transmits the identify sequence. A letter-bomb is a

piece of electronic mail containing character strings which first load a new identify

3While the current version of ITOSS has not explicitly implemented Lazarus sentinels, they

are available in the current implementation by using a two-phase locking protocol [Eswaran et al

76] in a synchronous sentinel and a special directory /lock.
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sequence into the terminal, and then requests the identify sequence back. Hence

the sender of a letter-bomb can force any sequence of characters to be entered from

a terminal. There are only two ways to protect against letter bombs in existing

operating systems: either remove all terminals supporting identify sequences or

put special code in the kernel (device driver) that prevents certain sequences of

characters from being transmitted. (Every time a new type of terminal is added,

new code must also be added to the system.) But sentinels yield a simple solution

to the above dilemma: simply attach a funnel which checks for the dangers sequence

to the device files corresponding to the terminals which are vulnerable.

In fact, we can see that all classical operating system access protection schemes

can be implemented by using sentinels. For example, standard UNIX allows a

program F to assume the rights of its owner including a set-UID (set User ID bit).

ITOSS can easily emulate this by adding a dummy entry F ′ to the file system. F ′

has ordinary protection data in it and a sentinel clause (Λ → 〈F , 2, V 〉), where Λ

denotes the empty string, V is the block of necessary privileges to run the set-UID

program, and 2 denotes that the sentinel is synchronous.4

Because sentinels are a powerful and general mechanism, we believe that they

can be used in other software engineering applications outside of security.

3.5 Previous Work

The nearest previous concept to sentinels are daemons. (Introduced in the MUL-

TICS operating system [Daley-Dennis 68] and the THE operating system [Dijkstra

68].) Daemons are continually running processes which maintain operating system

functions such as, printing subsystems which require management of queues of files

4In fact, in ITOSS, a clever implementation of this can be done with just one file system entry.

Simply add the sentinel clause to F , setting F to trigger itself as a sentinel! The restriction

against sentinels triggering subsequent sentinels prevents an infinite loop.
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to be printed. Sentinels provide a much finer degree of control that daemons.

Several operating systems, such as MULTICS ([Organick 72], [Schroeder-Saltzer

72],), Hydra ([Wulf-Levin-Harbison 81), and UNIX ([Ritchie-Thompson 74]) at-

tempted to address the issue of allowing a special process to actively intervene in

I/O operations. The approach these systems adopted was to require that the in-

termediate processes — which correspond to our sentinels — be directly executed

rather than passively triggered. Files were guarded by a restricted protection, and

the intermediate process was granted powerful rights when executed. In UNIX, for

example, In UNIX, each program X can have a set-UID bit set to be true. If it is,

then X will assume the rights of the owner of X when it is executed. For example,

a protected database would have a set-UID front-end; when data was changed, it

could only be written by the front-end since no other ordinary user could write any

bits of the database. Unfortunately, the only appropriate choice for most set-UID

identities is the special user root, which can read or write any file in the system.

Whenever root owns a set-UID program, that program becomes a potential source

of security errors; since the set-UID program has arbitrary power in the operating

system, the entire security structure of UNIX must be reproduced in every set-UID

program. (Berkeley UNIX 4.2 has dozens of set-UID programs and there several

widely known ways to violate the security of UNIX by exploiting weaknesses in

those programs. Several methods that are also common to AT&T UNIX system V

are described in [Grampp-Morris 84].)



Chapter 4

Incarnations and Secure

Committees

4.1 Overview

A delicate point of maintaining a secure operating system is the management of

security. Security management has two aspects: users must correct protections

and privileges assigned to their files and processes; and the system administrators

must manage the integrity of system files protection, installation of sentinels, con-

sistent interpretation of values in the securon tree, and creation and deletion of

users. ITOSS provides two structures for conveniently managing information. For

individual users, user identities are divided into incarnations, each of which pro-

vides a default set of privileges for the user’s processes and automatic assignment

of protections to the user’s files. For system administration, ITOSS provides se-

cure committees, a special incarnation allowing a group of users to form a special

incarnation which can perform operations that can not be trusted to a single user.

Hence each user may have several incarnation or, through committees, a single

incarnation may reflect the coordinated actions of several users.
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4.2 Incarnations

In real computer installations, users do many things. They read and write electronic

mail, they share information with different sets of users, they run applications, they

write programs and documents, they play games and read electronic bulletin boards,

and they do personal work. For each class of separate tasks, users require differently

configured security features.

Definition 4.1 An incarnation is a list of privileges (Vrd, Vwr, Vex, Vdt, Vcp) and a

automatic protection schema π. (The structure of π is given in definition 4.2.)

We allow each user U to have a number of incarnations I1, I2, . . . . When U
logs onto the computer he must pick an incarnation. He can change his incarnation

at any time. (On display terminals supporting windows, the incarnation can be

displayed at all times to remind the user of which mode he is in.) All processes

created by the user will have the default privileges specified by the incarnation.

Using minimum privileges is an effective safeguard against some Trojan Horse

attacks. A Trojan Horse is a seemingly innocuous program which has a hidden

feature subverting security. When the program is executed by a user with powerful

privileges, the Trojan Horse uses those powerful privileges to gain access to other-

wise protected data. By assigning users an incarnation with few privileges which

can be used with untrusted software, a system administrator can eliminate much

of the risk associated with Trojan Horses.

Definition 4.2 Let C be a set containing names of (common) programs and the

keyword other, Z be the set of integers, and H be the set protection headers. An

automatic protection schema is a function π : (C,Z) → H.

Suppose U is in incarnation I with automatic protection schema π. When U
creates a new file F with application program A, the protection assigner checks

whether A ∈ C. If it is not, the keyword other is used as the first argument to π.
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A can pass a suggested protection value as an integer through the second argument

in Z. (In ITOSS, this is done by using the standard UNIX “chmod values.”) F is

given the protection header calculated from π.

Similar mechanism provide an easy to use high level “change protection” facility;

the users chooses a suggested incarnation (determining π) and picks a protection

from a menu (determining the second argument to π).

The specification and implementation of powerful automatic protection schemas

is an area of active research.

4.3 Secure Committees

In many organizations actions with major consequences are made by groups of

people. For example, payments of large amounts of money may require co-signers.

This eliminates risk arising from the corruptibility of a single person.

We wish to emulate this feature for system management. A define a committee

to be an incarnation requiring q people out of a set of users {U1, . . . ,Um} to approve

all actions. A committee session is an active meeting of q committee members, who

are called the participants.

During a committee session, a proposed command will be presented to all of

the participants. The operation will be performed only if each of the participants

explicitly approves it. Hence each committee member has veto power when he

participates in a session.

To implement secure committees, we need to use a secret sharing algorithm due

to Adi Shamir. [Shamir 79] The algorithm give a protocol for dividing a text t into

m encrypted pieces such that q pieces determine the value of t but q− 1 pieces give

no information about the value of t.

We do all computations with integer residues modulo a prime p. Let

h(x) = r1x
q−1 + r2x

q−2 + · · · + rq−1x + t
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where the ri are independent random integer residues. The pieces of the secret are

the values h(1), . . . , h(m). The secret is t = h(0). Since q values of h determine

a nonsingular linear system of q equations in q variables, Lagrangian interpolation

will allow us to recover the values of the coefficients of h and hence t. On the other

hand, since our operation is over a finite field, q − 1 values of h do not determine

any information about the value of t.

For implementing secure committees, we let t be the password to the secure

committee incarnation. A sentinel called the dealer box picks a random h function

and securely distributes the pieces h(1), . . . , h(m) of the secret to the individual

committee members U1, . . . ,Um. (Secure distribution may use file system protection

primitives or may depend on private key encryption.)

When a quorum of q users wish to form a secure committee, they pass their se-

crets to the dealer box which assembles the pieces of the secret and passes the value t

to the password checking program. If the password checker accepts t, a secure com-

mittee is formed. Meanwhile, the dealer box picks a new random password t′ and

random function h′. After registering the password t′ with the password checker,

the dealer box securely distributes the new pieces of the secret h′(1), . . . , h′(m) to

the committee members. (If the system should crash prior to completing distribu-

tion, the password checker will still accept t.) This keeps an opponent from slowly

gather pieces of t and bing able to form a secure committee by himself.

The secure committee concept can be extended in several straightforward ways.

The protocol can support “weighted quorums” where different number of members

are required to form a secure committee depending on rank. For example, we can

give junior members one secret each and senior members two secrets. Our protocol

is also very appropriate for distributed implementations of secure operating systems.

If there are operations which do not require the full strength of the committee

but are still sensitive, the committee can delegate these tasks to subcommittees

by using sentinels. In the degenerate case, some simple sensitive tasks may be
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entrusted to a single user — a machine operator, for example.



Chapter 5

Fences

5.1 Validation

Once an implementor has specified a language for expressing security constraints

and provided a mechanism for enforcing them, the task he faces is to validate the

resulting system so to show that it is free of errors. Validation is an important issue

not just for security but for software engineering in general, and a large number

of methods, such as formal verification, testing, structured walkthroughs, have

been proposed for dealing with this problem. In practice, none of these methods

guarantee software without errors; they merely increase the confidence a user has

in the system.

Validation for security is special in that many cases we are trying to prohibit

some event from occurring. In this chapter, we propose a general method, fences,

for providing a “second test” of security conditions.

The term “fence” was first applied to the IBM 7090 computer to describe a

memory protection mechanism. [Bashe et al 86] In this context, a fence was a

pointer into memory which separated user and system memory. Memory beyond

the fence was accessible only in system mode, and this was enforced by independent

hardware.
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In our usage, a fence is any low-overhead hardware or software feature which

enforces security conditions by testing values independently of the main stream of

execution, allowing operations to be performed only if they do not violate security

conditions.

5.2 Fingerprints

In the course of his research on string matching, Michael Rabin proposed a special

hash function, called a fingerprint. [Rabin 81] His fingerprint function FK(x) hashes

a n-bit value x into a m-bit value (n > m) randomly based on a secret key K. The

interesting point is that given a y, if K is unknown, then no one can find an x such

that FK(x) = y with probability better than 2−m.

(Briefly, Rabin’s algorithm picks an irreducible polynomial p of degree m over

the integers modulo 2. The coefficients of p, taken as a vector, form the key K.

The bits in the input x are taken as the coefficients of a n − 1 degree polynomial

q. Let r be the residue of q divided by p in Z2[x]. r is a m − 1 degree polynomial,

and its coefficients, taken as a vector, form FK(x). A software implementation of

this algorithm merely consists of a sequence of very fast XOR operations. [Rabin

81] gives this algorithm in greater detail. [Fisher-Kung 84] describes a very fast

systolic hardware implementation of this algorithm.)

With the fingerprinting algorithm, we can install powerful fences. Suppose we

wish to guarantee that a file F has not been tampered with. One way we could

protect against this is by installing a funnel sentinel to guard F . However, F would

still be vulnerable to attacks on the physical disk. As a second-tier protection, we

could have the funnel sentinel guarding F keep an independent fingerprint elsewhere

in the operating system. If F was changed illicitly, the sentinel would instantly

detect it unless the fingerprint was also changed. Since the fingerprint is provable

impossible to forge with accuracy greater than 2−m unless the key K is known,
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it is impossible for the opponent to change F without eventually coming to the

attention of the sentinel.

5.3 System Call Fingerprints

A wide class of existing bugs in Berkeley UNIX 4.2 are based on race conditions.

In UNIX, system calls such as “read file”, “write file”, and “change protection” are

not atomic but concurrent. Because of the way the UNIX kernel is structured, it

is very difficult to detect all possible race conditions.

One race condition exists between the link system call and the chmod system

call. chmod changes the protection on a file F . In UNIX 4.2, security is enforced by

only allowing the owner of F or the system-user root to access F , so it first checks

ownership information and then changes the protection. link makes a new file

system entry F ′ and then sets it to point to F . Since a link call merely establishes

a link, no special security rights are required to execute it.

By running the two system calls simultaneously, it is possible for an opponent

to gain access to a file he does not own. Let F be owned by U . An opponent U ′

might gain access to F by executing these two system calls simultaneously:

1. link(F ′,F). Link file F to F ′.

2. chmod(0666,F ′). Make F ′ publicly available for reading and writing.

If these system calls are executed, the following chain of events sometimes will

occur:

1. link creates a dummy entry F ′ owned (temporarily) by U ′.

2. chmod checks F ′ to see whether U ′ is allowed to change its protection. Since

U ′ temporarily owns F ′, chmod approves the action.
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3. link completes the pointer from F ′ to F . At this point U ′ can not access F
or F ′ since those files are owned by U .

4. chmod, having already approved rights to change the protections to F ′, goes

ahead and makes that file publicly readable and writeable. Since F ′ is now a

pointer to F , this makes F publicly readable and writeable, and thus U ′ can

access that file.

We found this bug and several other bugs in UNIX 4.2 by inserting fences in

the operating system which fingerprint system call requests at the top level of the

kernel and at the driver level. The fingerprints contain the text of the request and

the security data (process privilege information and file protection information)

associated with the processes and files. If the fingerprints do not match, the fence

determines that race conditions must exist in the kernel and halts the processor. In

the above example, the protection information associated with F ′ changes from the

top level of the kernel and the driver level and hence the fingerprints are different.

While our current library of fences is not yet sufficient to validate a secure

system by itself, we believe that the technique can be used in conjunction with

more traditional validation methods to provide a very high degree of confidence in

security software.
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A Prototype Implementation

Approximately one man-year was spent converting 4.2 UNIX running on a SUN-2

processor into a prototype version of ITOSS. This chapter describes the results of

some performance experiments, some hints for the potential users of the system,

and some fine points of the implementation.

This section discuss details drawn from UNIX internals and presumes a famil-

iarity with UNIX at the level of [Berkeley 84].

6.1 Performance

Performance was measured on a fragmented file system, that is one which had

blocks distributed as would be typical after several hours of intensive use since

the last reformatting operation. 88% of the blocks on a 4.2 BSD disk were used.

Normally, disks are only formatted once, so fragmented file systems are the normal

state of affairs. [McKusick et al 83] indicate that this file system configuration with

approximately 39% overhead above that of an empty file system.

We tested the performance of five system calls: open, close, read, write, and

chdir. Only operations that succeeded were counted for performance purposes.

[Ousterhout et al 85] shows that these five system calls account for 78% of all
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system calls under UNIX. Moreover, the I/O structure of these system calls reflect

typical uses of ITOSS system.

Using the UNIX emulation mode described below, ITOSS files were assigned

naturally occurring privileges. The ITOSS process taking measurements was given

a fixed privilege involving two positive terms and one negative term. Parameters to

open attempted to open a file for both reading and writing. Parameters to write

attempted to write 1K bytes into a file. Parameters to read attempted to read 1K

bytes from a file.

Files were chosen from randomly chosen top level user directories. All files

were ordinary block files. The experiment was repeated three times, once under

standard UNIX, once under ITOSS without fingerprinting, and once under ITOSS

with fingerprinting. Each experiment examined 1,000 files.

Here are the experimental results. Percentages compare relative time compared

with standard UNIX.

Standard UNIX ITOSS w/o fences ITOSS with fences

open 100% 104% 104%

close 100% 99% 100%

read 100% 100% 108%

write 100% 101% 109%

chdir 100% 104% 104%

To summarize, ITOSS introduces less than 10% performance degradation com-

pared with standard UNIX. (5% performance degradation if fingerprinting is not

used.)

6.2 How to Initially Configure ITOSS

We envision ITOSS being shipped with an initial default security configuration and

an initial secure committee. The ITOSS tape would come with a full set of initial
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passwords which could then be used to immediately use ITOSS. A basic set of

general purpose sentinels would also be provided for the purposes of bringing up

the system. The secure committee, with the security engineers, could then configure

ITOSS to the exact structure demanded by the organization using it.

6.3 Some Implementation Details

6.3.1 Peculiarities

Some UNIX peculiarities forced us to alter the current model described in Chapters

2 through 5.

Detection access: There is no general access right for file detection under UNIX.

By convention, all files are stored in a directory. Knowledge of the file’s existence,

by convention, is contingent on read access to the directory containing the file.

However, it is also possible to attempt to discover the existence of a file by over-

writing it, so all access rights to a directory must be turned off to make detection

impossible. For this reason we adopted the following rule: Restriction of detection

to a file is only meaningful when all rights to the directory containing the file are

similarly restricted.

Process structure: In UNIX, a process can fork off arbitrary other subprocesses.

Typically, the correct operation to perform in this context is to give the subprocesses

identical privileges to the original process. Unfortunately, it is frequently necessary

to further restrict the privileges of the subprocess. For this reason, a subprocess

may have positive privilege set equal or strictly less strong than that of the original

process. Similarly, the negative privileges of the process must be equal to or strictly

stronger than that of the parent process. Privilege change is controlled via the new

chpriv system call. The process table in memory is not accessible except through

special programs having read rights on /etc/kmem. Signaling follows standard

UNIX conventions.
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Resource control: No attempt is made to protect covert resource channels such

as free blocks or free inodes. To run under a fully secure environment, either

substantial excess inodes and free blocks should be provided, or the file system

should be partitioned finely to correspond to confined regions.

6.3.2 File System Alterations

Additional space is needed to store the protection information associated with files.

This information is stored in a 1K block header to each header occurring directly

after the indirection block header. Note that this relieves the necessity to inspect

the inode table in most cases, and in any case allows the inode table to shrink in

size, causing non-trivial performance improvements over standard UNIX. However,

since this information may be needed for the compatibility library described below,

the inode table has been kept intact.

6.3.3 Internet

All Internet support has been turned off. All new IPC mechanisms, that is, all

interprocess communication except pipes, has been disabled.

6.3.4 Hooks for Fingerprints

At the system call level, prior to updating the active file table, all I/O calls make

a kernel call is made to the procedure marktop which can provide arbitrary fin-

gerprinting. A similar call to markbot is provided at the virtual file system block

allocation level. Performance could be improved, at the loss of easy control, by

making the mark procedures into macros with explicit parameters.
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6.3.5 System Calls

The following system calls have been added to ITOSS: chprot allows a process to

change the protection of a file to which the process has change protection access.

protstat retrieves the header of a file. chpriv changes the privilege of the active

process.

6.3.6 Compatibility Mode

The following system calls are implemented via a compatibility mode call which

emulates the behavior of standard UNIX sytem calls: access, chmod, chown, creat,

getgid, getegid, getgroups, getuid, geteuid, mkdir, mknod, open, setgroups,

setpgrp, setregid, setreuid, stat.
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Open Problems

This thesis is a snapshot of the current state of the ITOSS implementation and

security toolkit project. This work leaves many issues open for future exploration.

Because this is a list of potential future work, many of these items are quite spec-

ulative.

The modification of UNIX utility programs to match ITOSS data structures:

Currently ITOSS supports UNIX utilities via a compatibility library. While this

provides a quick way of including UNIX utilities in ITOSS, it also means that those

UNIX utilities are limited to security features provides in standard UNIX. In the

near future it is important to port over a central core of UNIX utilities to use full

ITOSS features.

Extension of ITOSS to a distributed system: ITOSS currently runs on a unipro-

cessor. Because of the decentralized nature of its security data, the conversion of

ITOSS to a distributed system is not an unreasonable project to consider. Dis-

tributed ITOSS could shed considerable light on the nature of the hierarchical

division of security. Moreover, by using redundancy available in the system, it may

be possible to preserve file system integrity even if physical security is not complete.

It may be possible to preserve the file system even if an adversary tampers with

one processor.
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Integration of ITOSS with existing network secure systems: Private-key cryp-

tography provides a powerful but coarse method for protecting network security.

What aspects of the finer security given in ITOSS can be transferred under network

security systems?

Simulation of heterogeneous systems: ITOSS has features allowing it to sim-

ulate all conventional security structures. Moreover the committee/subcommittee

structure allows us to run separate security regimes on a single file system. This

allows us to simulate heterogeneous secure operating systems connected by a sim-

ple file transfer protocol or common file system. The implied connection between

the heterogeneous elements will be determined by the form selected for embedding

the separate security structures in ITOSS. Eventually, such an approach may yield

a general method for representing translation functions of security parameters in

arbitrary heterogeneous systems.

Graphical human interfaces: The securon tree we use is a graphical object, and

many of the logical operators we use can be conveniently described pictorially. This

suggests that we can help the security engineer by providing graphical descriptions

of particular ITOSS security structures.

More fences: The fence method presented in this thesis can undoubtably be used

to yield further tests for insuring the security of systems. A particularly intriguing

direction to explore is to search for high-level fences which check the configuration of

a running system against security constraints expressed in an alternative notation.

Strong automatic protection schemas: The operating system has additional

environmental information available to it when it assigns automatic protections to

files. For example, it frequently knows the file type, the current applications being

run, the time of day, etc. This information may be usable to make the automatic

protection scheme give a finer degree of control.

Sentinels as a software engineering tool: Sentinels are a very general mechanism

and their use is not limited to security applications. What are the applications of
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sentinels as software engineering tools? Here are two examples which give a flavor

of what might be possible with sentinels: we can attach sentinels to window devices

to provide very intelligent windowing systems; or we can use sentinels to provide

version control and configuration management.

Hardware assists for fences: Much of the specialized processing used for fences

can be performed in parallel with standard operating system operations. Could

specialized hardware running in parallel be cost effective for increased performance?

User Authentication: This thesis did not address issues of making a better

password control mechanism. Given the variety of cryptographic tools available to

computer science researchers, the time is ripe to reconsider the important area of

user authentication for secure operating systems.

ITOSS subsets: Is there a small subset of the ITOSS model which can be brought

up very quickly for special purpose applications?
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