[ACM Computing Reviews, 28:9, September 1987, pp. 454-455|

D. Software

D.2 SOFTWARE ENGINEERING

Liskov, BARBARA; AND GUTTAG, JOHN 8709-0718
(Massachusetts Institute of Technology, ‘
Cambridge)

Abstraction and specification in program development.
MIT Press, Cambridge, MA, 1986, 469 pp., $39.95,
ISBN 0-262-12112-3. [The MIT electrical engineering
and computing science series.} -

This is a splendid, up-to-date introduction to software
engineering, suitable for either an undergraduate course or
self-study. It has a wide range of topics: from techniques
for designing large programs to purely theoretical aspects
of formal verification.

Introductory texts on software engineering are a mixed
lot. There are some excellent books on programming issues,
such as Fred Brooks’s The mythical man month [1], and
some excellent books on stylistic and low-level software
issues, such as Kernighan and Plauger’s The elements of
programming style (2] or Bentley’s Writing efficient pro-
grams [3]. Liskov and Guttag’'s new book fits nicely
between these two approaches by addressing the problems
that face the individual programmer writing a large pro-
gram or system.

As the title suggests, the unifying theme of this book is
the use of abstraction and specification to produce clean,
robust, highly modular, and efficient software. When they
discuss abstraction, the authors present data abstraction
(the use of high-level constructs to support object-oriented
programming), procedural abstraction (the decomposition
of problems into hierarchical units), and control abstrac-
tion (the use of iterators as a control structure to l0oop
through objects known only by their data abstraction).
With emphasis on informal methods, the authors use
specifications not merely as a documentation technique but
as an integral part of the software design and implementa-
tion process. The authors illustrate their techniques with
numerous examples.

One important feature of this book is the use of the
programming language CLU. By examining the structure
of CLU, the book is able to give a detailed exposition of the
abstraction mechanism. It would be difficult to give such 3
clean description if the authors had chosen C or Modula-2
as their base language. Ada certainly supports abstraction

Computing Reviews ¢ September 1987

well, but a discussion of Ada would also bring in many
extraneous complications that would clutter the text. CLU
was an excellent choice of language since it provides good
support for exactly those features needed for data and
control abstraction. Since many readers will program in
languages other than CLU, the authors are careful to
explain at length exactly how abstraction and specification
can be used in languages such as Pascal and Ada. For
readers not familiar with CLU, the book includes a
leisurely introduction to the language as well as a reference
manual.

Along the way, the authors present a thorough survey of
all of the pragmatic issues confronting a software engineer:
the software life cycle, requirements analysis, design, docu-
mentation, evaluation, testing, validation, and verification.
Of particular interest are the chapter on using exception
handling methods to produce programs with graceful de-
gradation and the chapter on testing and debugging. These
chapters carefully cover material not usually found in
introductory books on software engineering. For those of a
more theoretical bent, the authors also cover formal meth-
ods for specification and verification (after placing these
techniques in context). The theoretical material is well
presented, but is somewhat disjointed and denser than the
rest of the text.

The reviewer used this book as a basic text for an
advanced undergraduate course in software engineering at
Carnegie-Mellon University. The book is well suited for
this purpose. The writing is crisp and holds the student’s
interest, and the exampies clearly illustrate the points made
by the authors. Although there is more material in the book
than could be covered in a single semester, many of the
later chapters are self-contained and can easily be omitted.
Two extremely useful features for an instructor are an
appendix that contains a sequence of student programming
projects and an extended example of a simple text for-
matter that demonstrates how the concepts introduced in
the book fit together. The example starts from design
considerations and meticulously shows the steps a pro-
grammer works through to get the final program. This
approach has two advantages. It gives an additional illus-
tration of the individual methods presented earlier, and it
provides students who learn by studying examples with a
sample of conscientious programming. Without doubt, this
book will be widely appreciated by both students and
practicing software engineers.

—J. D. Tygar, Pittsburgh, PA

REFERENCES

(1] Brooks, F. P., JR. The mythical man-month: essays on software
engineering, Addison-Wesley, Reading, MA, 1975. See CR 16, 10
(Oct. 1975), Rev. 28,944,

[2] KerNIGHAN, B. W.; AND PLAUGER, P. J. The elements of pro-
gramming style, McGraw-Hill, New York, 1978. Sec CR 20, 2
(Feb. 1979), Rev. 34,059,

{3] BENTLEY, J. L. Writing efficient programs, Prentice-Hall, Engle-
wood Cliffs, NJ, 1982. See CR 23, 10 (Oct. 1982), Rev. 39,767.
GENERAL TERMS: DESIGN, LANGUAGES, VERIFICATION

Computing Reviews ¢ September 1987 455

