In IEEE Transactions on Software Engineering, 22:1, January 1996, pp. 16-30

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 1, JANUARY 1996

A Model for Secure Protocols
and Their Compositions

Nevin Heintze and J.D. Tygar, Member, IEEE

Abstract—This paper develops a foundation for reasoning about protocol security. We adopt a model-based approach for defining
protocol security properties. This allows us to describe security properties in greater detail and precision than previous frameworks.
Our model allows us to reason about the security of protocols, and considers issues of beliefs of agents, time, and secrecy. We
prove a composition theorem which allows us to state sufficient conditions on two secure protocols A and B such that they may be
combined to form a new secure protocol C. Moreover, we give counter-exampies to show that when the conditions are not met, the

protocol C may not be secure.

Index Terms—Authentication, clocks, communication, composition, computer security, cryptography, formal methods, logic of
authentication, model, model checking, protocol analysis, protocols, protocols-compeosition of, protocol analysis, security, time,

timed models.

1 INTRODUCTION

W HAT does it mean for a protocol to be secure? How
can we reason about secure protocols? If we combine
two existing protocols into a common protocol, what can
we say about the security of the new protocol?

This paper develops a foundation for reasoning about pro-
tocol security. We adopt a model-based approach for defining
protocol security properties. This allows us to describe secu-
rity properties in greater detail and precision than previous
frameworks for reasoning about protocol security.

Some of the most advanced work in this area is repre-
sented by the Logic of Authentication (developed by Bur-
rows, Abadi, and Needham [11]) which presents a proof-
based (or rule-based) approach to reasoning about security
properties of protocols. In contrast, we develop a model-
based definition of security from first principals. This model
provides a comprehensive formal description of the possi-
ble actions and interactions among agents, and includes
notions of an agent’s beliefs and knowledge about mes-
sages. (Messages include keys, nonces, secrets, text, names,
etc.). Given these basic notions, we then define protocol
security in term of preservation of properties: first, we can
define what it means for a given state to be secure; next, we
can reason about protocols that maintain this property.

Our model allows us to reason about time in protocols in
a concrete manner. This means that we do not need to rely
on a broad notion of “freshness,” but that we can define
freshness in terms of more primitive concepts.

A highlight of the paper is an account of compositions of
protocols. Suppose that we have two protocols A and B
which we wish to use together to form a new composite pro-

o N. Heintze is with AT&T Bell Laboratories, 600 Mountain Avenue, Mur-
ray Hill, N 07974. E-mail: nch@research.att.com.

e].D. Tygar is with the School of Computer Science, Carnegie Mellon Uni-
versity, Pittsburgh, PA 15213. E-mail: tygar@cs.cmu.edu.

Manuscript received November 1993; revised April 1995.
For information on obtaining reprints of this article, please send e-mail to:
transactions@computer.org, and reference IEEECS Log Number 595061.

tocol C. For example, A may call B as a subprotocol, or A and
B may be concatenated, or A and B may run simultaneously
as coprotocols. If A and B are secure, under what conditions is
C secure? We state sufficient conditions on A and B guaran-
teeing the security of the composite protocol C. Moreover, we
give counter-examples to show that when the conditions are
not met, the protocol C may fail to be secure.

We split the notion of security into two parts: we define
the secret-security and the time-security of protocols. By
secret-security, we mean that messages believed to be secret
are never revealed. By time-security, we mean that stale mes-
sages cannot be replayed to.subvert the protocol. Although
these properties are easy to state informally, a precise account
of them must address a number of subtle temporal issues. We
consider these properties in a wide framework making them
applicable to any reasonable notion of time.

In summary, our paper includes the following novel
aspects:

¢ A detailed development of an elementary model the-
ory of agent interaction that provides an independent
definition of security. N

* A very general treatment of time (for example, we
make no assumptions about global synchronization of
time) that supports very general reasoning about in-
terleaving, repeating and composing protocols.

e An explicit account of agent beliefs and nonces, in-
cluding asynchronous generation and expiry.

s A composition theorem on secure protocols.

2 MODELS AND SECURITY

2.1 Background

Consider a distributed network of communicating agents.
Agents can send and receive messages, encrypt and decrypt
messages, and generate new messages, keys and nonces.
Most communication proceeds according to agreed proto-

0098-5589/96$05.00 ©1996 IEEE

HEINTZE AND TYGAR: A MODEL FOR SECURE PROTOCOLS AND THEIR COMPOSITIONS 17

cols. Such protocols specify how an agent should interpret
and respond to messages. The purpose of these protocols
may be authentication, key distribution, or information
sharing. For example, in the simple protocol given in Fig. 1,
an agent A asks a server S to establish an A-B session key
(by sending the message (4, By,), and § responds by

sending a secure key K,, to A and B. We use {M}, to denote
the encryption of message M with key K, and so
{A, B, K43}, denotes the message with components A, B and

K,; encrypted with K. The keys K, and K, are assumed to
be A’s and B’s respective secure keys for communicating
with the server S. Unfortunately, this protocol is not secure.
It is particularly vulnerable to replay attacks: an adversary
can record messages 2 and 3 from a valid run of the proto-
col, and then replay them at any time to convince either A
or B to reuse a stale session key.

Message 1 A-S: {A, B,
Message 2 S A: {A, B, Kppl,
Message 3 S—B: {A, B, Kyplx,,

Fig. 1. A simple (and insecure) protocol.

2.2 The Model-Based Approach

One way to reason about the security of protocols is to
use models. Models characterize how agents interact. They
specify how messages are sent and received, what messages
a particular agent can assemble and transmit and which
actions an agent can perform at a particular time. In short,
models define what can happen.

Given a definition of what can happen, we can study se-
curity properties by asking: can anything bad happen? That
is, in the space of all possible situations and interactions, is
it possible for secrets to be leaked, session keys to be com-
promised, stale keys to be re-established by replay of old
messages, etc.

For example, consider again the protocol in Fig. 1. Fig. 2
presents one possible trace of agent behavior. It records the
actions of a server S, agents'A and B, and an adversary D.
The first part of the trace consists of a run of the protocol, at
the end of which agents A and B conclude that K,,, is a good
session key for A-B communication. In the second part of
the trace, an adversary D replays one of the earlier mes-
sages to confuse A. At the end of the second part of the
trace, A again believes that K,; is a good session key for
A-B communication. This puts A and B at considerable risk,
because now the adversary D is free to resend old messages
using K, or worse, if the adversary has broken K, it could
construct its own messages using K,, and effectively mas-
querade as B.

This is only one of many possible traces of behavior for
A, B, D, and S. Some traces of agent actions are not sensible:
for example, a trace in which an agent receives a message
before it is sent, or a trace where an agent encrypts and
sends a message using a key that it does not know about.
We need to have traces correspond to feasible agent inter-
actions. These traces are called models. The definition of
what constitutes a model is the central component of a

model-based approach to protocol analysis. Such a defini-
tion gives rise to a class of potential models which explicitly
describe all possible agent behaviors. (There are of course
many model definitions, corresponding to different as-
sumptions about agents and communication. Each model
definition identifies its own class of models.)

2.3 Overview of Our Model

In our model definition, agents are viewed as non-
deterministic machines with some internal state, communi-
cating over public channels by sending and receiving mes-
sages. The internal state of an agent determines what action
an agent will take next. The behavior of some agents is de-
termined by a protocol. Some agents (such as adversaries)
will not adhere to the protocol. They can behave arbitrarily.
Other agents may be partially faithful (for example, clients in
an electronic commerce protocol may try to cheat). Our
model definition views a protocol (and an accompanying
specification of the level of faithfulness of each agent) as a
constraint on the possible actions of agents. More specifically,
each agent is associated with a next-action function that maps
its current state into the set of possible next actions. Adversar-
ies are unconstrained, while completely faithful principals
(such as servers) are fully constrained by the protocol.

Returning again to the protocol in Fig. 1, observe that the
server S should only send the key K, to A and B if it be-
lieves that K, is a good key for A~B communication. Agent
state must therefore include beliefs about what keys are
secure. In our model definition, the internal state of each
agent consists of three components:

1). the set of messages and keys known to the agent.

2) the set of messages and keys believed by the agent to
be secret (and with whom the secrets are shared).

3) the set of nonces recently generated by the agent.

These beliefs do not need to be as general as the beliefs that
are typically used in proof systems such as the Logic of
Authentication [11].l This is because, in our model definition,
beliefs are only used to capture a very basic notion of agent
state. We do not, for example, need to include complex be-
liefs about the freshness of compound messages received
from other agents. We explain this issue in more detail in
the next subsection.

Before we can use our model to answer question such as
“does the protocol protects secrets such as session keys or
confidential information,” we must first determine what are
the secrets in the model. This is typically implicit in the pro-
tocol specification, and is made explicit in our model by the
next-actions function described above. Since most protocols

assume that agents possess certain initial shared keys (for

example, to talk to a server), we must ensure that models
start in some consistent configuration such that the initial
keys are indeed secure. In other words, protocol security in
our model is about preservation of properties: we define
what it means for a given state to be secure and then a se-
cure protocol is one that maintains this property.

1. However, in principle, more complex beliefs could be used as part of
agent state,

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 1, JANUARY 1996

S’s events A’s events

B’s events D’s events

send{A, B}k 5
receive{ 4, B}x 5

send{A, B, KA}k s
send{A, B,K4B}Kps
recetve{ A, B, KB}k s

conclude: Kap is good

recewe{A, B, K 4B} K 45

conclude: K4p s good

Fig. 2. One possible trace of agent events.

One of the more subtle aspects of our model is its treat-
ment of time. We use an abstract, distributed notion of time.
There is no global ordering of agent events, only a local order-
ing of each agent’s events. The belief component of an agent’s
state is continually changing: it evolves asynchronously and
nonmonotonically. Beliefs about nonces are established by an
explicit nonce generation event (each such event is guaran-
teed to generated a fresh nonce). Beliefs about secrets (keys or
messages) are established either by an explicit message gen-
eration event (again such events are guaranteed to generate
fresh messages) or by a change of internal state in response,
for example, to the receipt of a message. Critical to our model
is the idea that nonces and beliefs expire after some
(undetermined) time: as part of the definition of model, the
following two conditions must hold:

1) Each nonce eventually expires.
2) Each belief of each agent eventually expires (but it
may be re-established at some later stage).

3 PROOFS VERSUS MODELS

Model-based approaches focus on agent interaction, and the
central question is: what interactions are possible? In contrast,
proof-based approaches, such as the Logic of Authentication
[11], focus on formulas representing agent beliefs, and the
central question is: What beliefs are provable?

3.1 Proof-Based Approaches

Proof-based approaches typically consist of two compo-
nents: a language for expressing properties about keys,
messages and agent beliefs, and a collection of rules for
reasoning about these properties. For example, we could

write A<«—% B to denote the property that K, is a secure
key for communication between A and B, and the com-
pound formula A [EA(—Ki—eB to denote that A believes

that K, is a secure key for communication between A and
B. Using such formulas, we can write rules such as

receive{A, B, Kap}k s
save{A, B, K4},

receiue{A, B, KAB}KBS

conclude: K 4p is good

resend{A, B, K4}k,

A IsAéLaB,Aq{X}KAB
Als Bl~X

where A < {X} denotes that agent A sees the message X

encrypted with key K,,, and A lE B |~ X denotes that A

believes that B once said X. This rule expresses the follow-
ing claim: if A believes that K, is a secure key for commu-
nicating with B, and A sees some message X encrypted with
K,, then A is entitled to believe that, at some time in the
past, B said the message X.

3.2 COMPARISON WITH MODELS

The main advantage of proof-based systems is that they are
based on simple, intuitive reasoning rules and are easy to
use. Today, comprehensive proof-based systems such as
Burrows, Abadi and Needham’s Logic of Authentication’
are the most useful and widely used tools for discovering
problems in protocols. : ‘

However, proof-based systems gloss over a number of
important issues. For example, what do the basic properties
really mean? The systems do give them an implicit mean-
ing: a property can be identified with the set of all proper-
ties derivable from it. But this is not very satisfactory: it is
indirect, gives little intuition, and is dependent on complex
interactions among the rules. An even more perplexing
question is how to develop and justify the proof rules.
These rules are usually carefully constructed to correspond
to certain intuitions about how agents interact and how a
protocol unfolds. However, these rules often make many
implicit assumptions. For example, if we are reasoning
about a protocol in which two agents A and B establish a
session key K,; for secure A-B communication using a
server S, then the example rule given above relies on a
number of assumptions, such as

e Agents A, B, and S do not deliberately or mistakenly
send the key K, in plain text.

HEINTZE AND TYGAR: A MODEL FOR SECURE PROTOCOLS AND THEIR COMPOSITIONS 19

¢ Agent S never sends messages encrypted with K,
(note that this could be very subtle, since it could in-
volve an adversary resending messages to try to con-
fuse S). ,

In summary, an important issue arises with proof-based
approaches: if we apply a particular proof-based reasoning
system to a protocol, and the system answers “yes, the pro-
tocol is secure,” then what have we achieved? What has
been proved? Can the protocol be broken? One simple an-
swer is: if the proof rules are “correct” then the protocol is
good. A more comprehensive response is that if the as-
sumptions on which the rules are based are satisfied, then
the protocol is correct. The issue, then, is to isolate the as-
sumptions and determine when they are satisfied. This is
very difficult, and has thus far progressed only on a trial
and error basis.

In contrast, model-based approaches address the ques-
tion of meaning in a very direct manner. To define a model
one must explicitly identify assumptions. Because of the
subtleties involved in reasoning about protocols, such a
definition can be surprisingly detailed and complex, par-
ticularly if one is to give a satisfactory account of time.

An apparent disadvantage to models is their lack of di-
rect reasoning principles. Model-based approaches define
security in terms of properties that hold over all possible
traces of agent interactions, so, in principle, we must con-
struct each of these traces in turn and check that the appro-
priate conditions hold. This is not feasible since there may
be an infinite number of different traces and the traces
themselves may not be bounded. However, for some re-
stricted classes of protocols, we can limit the traces that
must be considered to some finitely representable collec-
tion, and thereby develop model-checking algorithms. Hence
models have two uses: they not only provide a basis for
studying the security properties and evaluating proof-based
systems, but they can also be used to develop model-
checking methods for protocol verification.

3.3 Beliefs

We now describe an important technical difference between
our model and the Logic of Authentication. The Logic of
Authentication contains an expressive language for repre-
senting and reasoning about beliefs. For example, we can
express beliefs about the freshness of compound messages
received from other agents, beliefs about the beliefs of other
agents, as well as beliefs about the security of keys and
messages.

In contrast, our model uses a limited form of belief to
capture part of the state of an agent. These beliefs are either
about the freshness of nonces, or about the security of mes-
sages (in particular, which secrets are shared with whom).
More complex beliefs are not required because the process
of establishing properties of a protocol does not proceed by
reasoning about formulas. Rather, the focus is on what in-
teractions can happen. For example, suppose that an agent
receives a message M that contains a new key from a server.
In the Logic of Authentication, the agent will need to estab-
lish that M is fresh before it will conclude that the key is a
valid key. If it cannot establish that M is fresh, then it will

not be able to conclude that the key is valid. In our ap-
proach, the agent will just follow the protocol—if the proto-
col conditions are satisfied (that is, the message has the
right format, etc.), then the agent will assume that the key is
valid. If there is a problem with the protocol, and the key is
not in fact valid, then the model is not secure.

In other words, when the Logic of Authentication is
applied to a faulty protocol, the fault becomes evident
when the target belief of the protocol cannot be proven.
When our model is applied to a faulty protocol, then some
of the models of the protocol will not be secure. The ab-
sence of security might arise from an agent belief about a
secret that is not valid, or a model that does not satisfy the
appropriate belief expiry conditions.

To summarize, the role of beliefs in our model and the
Logic of Authentication are different. Beliefs used to de-
scribe agent state in our model bear little relationship to the
actual protocol properties that we can establish. However,
in the Logic of Authentication, the class of properties that
we can reason about is exactly the class of formulas used to
express beliefs in the logic. (In Section 4.2, we give another
illustration of the differing roles of beliefs.)

4 RELATED WORK
4.1 Models

The idea of using models to reason about security has
been explored in a number of papers. Early work by Dolev
and Yao [12] considers the security of simple ping-pong pro-
tocols in which agents exchange messages and acknow-
ledgements in the context of a public key cryptosystem.
Agent interactions are modeled using strings (sequences) of
encryption, decryption, naming, and name-matching op-
erations. The problem of reasoning about these interactions
is embedded into a word transformation problem for which
a polynomial-time algorithm is presented. Subsequent work
has considered more general models addressing a larger
class of protocols and a wider variety of security properties.
For example, [20] describes a model based on a trace of
messages sent and received by each agent in the system,
much like the model described in this paper. However, it
does not address agent beliefs, and so is not applicable to
key exchange protocols. It also does not address issues such
as the expiry of nonces. Other relevant works are [16], [19].

4.2 The Abadi-Tuttle Model

Only a few papers have considered security models that
deal directly with the issue of time. Abadi and Tuttle [2] use
model theoretic constructions to clarify and explain the
Logic of Authentication. At a superficial level there are a
number of similarities between this model and our model,
such as the use of traces. However, the two models differ in
fundamental ways.

First, consider the treatment of nonces and beliefs. In
Abadi and Tuttle’s model, time is global and synchronized.
For example, nonce expiry happens at time 0 (the first state
of the current epoch): any nonces used before this are con-
sidered stale for the current epoch, and nonces used after
this are considered fresh throughout the current epoch.

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 1, JANUARY 1996

Hence, the possibility of behaviors arising from nonces ex-
piring at different times is not considered.

Second, consider the nature of beliefs. In Abadi and Tut-
tle, beliefs about shared secrets are essentially static: If a
belief about a secret is true at one time, then it is true for all
time. In our model, beliefs are continually changing: an
agent may believe that a message is secret at one time, but
not at some later time (this is an important part of the
mechanism for defining time-security). In fact the whole
notion of belief differs greatly between the two models. The
Abadi and Tuttle model defines what beliefs are true at
each point in the model. In our model, beliefs are used to
capture one aspect of agent state at each point in the model.
The beliefs that an agent has at a particular point may or
may not be true (the model makes no judgment about an
agent’s beliefs on a point by point basis).

Third, the two models have very different structure. The
central component of the Abadi and Tuttle model is a specifi-
cation of the truth of each (Logic of Authentication) formula
at each point in the model. This, in turn, is used to justify the
proof rules of the logic: it is argued that if the assumptions of
a rule are true at a particular point in the model, then the
rule’s conclusion is also true at that point in the model. As a
result, their model closely follows the structure of the under-
lying logic. In contrast, our model seeks to construct a basic
and independent definition of security properties. The basic
idea is to build a model that characterizes all potential inter-
actions, and then develop notions of security based on prop-
erties that hold over the class of all models. Our model there-
fore focuses on the mechanics of how agents interact. For
example, we have explicit message/nonce generate events
and explicit belief expiry events.

Fourth, the most significant difference is that these two
models have very different purposes. To illustrate this,
consider the belief P controls ¢ in the Logic of Authentica-
tion. In the Abadi and Tuttle model, the formula is true if,
whenever P sends a message2 containing ¢, it is the case
that ¢ is true at time 0 and at all times after this. Such a be-
lief is the principal way to indicate the trustworthiness of a
server (or other key generating agent) in the Logic of
Authentication. It is, however, a very strong condition. For
example, if ¢ states a property such as M is secret, then P
controls @ means that P is trusted never to reveal the secret
to an adversary, and any agents that P shares the secret with
(and any agents that they in turn share the secret with) are
similarly trusted.

In contrast, our model does not have any notion of P con-
trols ¢@. Instead, the philosophy of our model is: let’s see
what happens when the protocol is run (and rerun), and see
if all reachable states are secure. This distinction underlines
the central difference between model-based and proof
based approaches to protocol security.

4.3 Other Related Work

A number of other papers combine proof and model ap-
proaches. Building on the Abadi and Tuttle model, [24] ex-
tends-the Logic of Authentication to include temporal op-
erators, and thereby provide a more expressive treatment of

2. This does not include the case when P just forwards a message.

time. [4] uses a notion of agent histories (that record mes-
sages sent and received by each agent) to develop a tempo-
ral logic for reasoning about security. It does not address a
number of key issues relating to time such as the expiry of
nonces and beliefs. [22] use a logic language equipped with
temporal operators for specifying protocol requirements to
be checked by the NRL Protocol Analyzer [19].

In general, time has received increasing attention in the
literature on protocol security analysis. The Logic of
Authentication [11] was one of the first papers to directly
consider time, and provide reasoning principles for reason-
ing about the freshness of nonces and messages. However,
the notion of time was somewhat limited; protocols were
static in the sense that one could only consider a single run
of a protocol. The idea of considering instances of protocols
and potential interactions among them was subsequently
considered in [5].

5 MESSAGES, KEYS, AND ENCRYPTION

We begin by considering the basic notions of messages and
encryption. In this paper we consider security properties
that are independent of the underlying message represen-
tation and encryption scheme. We assume an idealized
model of message representation and encryption. Specifi-
cally, we assume that messages are independent; that is,
having one message does not give any information about
another message. Second, we assume that the only way to
obtain any information from an encrypted message is to
have the appropriate key. This is often referred to as
“perfect encryption” in the literature [6], [14].

Of course, in general, there may be important. interac-
tions between a protocol and the underlying encryption
scheme used in its implementation. In particular, if an en-
cryption scheme is amenable to a probabilistic analysis,
then it would be desirable to extend the analysis to any pro-
tocols using the encryption scheme. However, such an
analysis of a protocol is likely to be dependent on the spe-
cific properties of the encryption scheme, and hence must
be done on a case by case basis.

In contrast, the perfect encryption assumption leads to a
more abstract notion of protocol security. Specifically, it yields
a lower bound analysis: if a protocol is not secure under the
perfect encryption assumption, then it fail to be secure re-
gardless of the encryption scheme used. Another view of the
petfect encryption assumption is that it provides a way to
decompose the problem of analyzing a protocol into two sub-
problems: 1) an analysis of the protocol that focuses on the
intrinsic security properties of the protocol by ignoring de-
tails of the encryption scheme used, and 2) an analysis of how
the encryption scheme interacts with the protocol. This paper
is concerned with the former problem.

To formalize the perfect encryption assumption, first let B
denote a set of basic messages, which shall represent the keys,
the nonces, and the nondecomposable message of the
model.* Notationally, we shall use K to denote elements of B

3. That is, messages that are not encryptions or compositions of
other messages.

4. We will assume that each agent A has a publicly known name
(also denoted A) that is a basic message.

HEINTZE AND TYGAR: A MODEL FOR SECURE PROTOCOLS AND THEIR COMPOSITIONS 21

that are used as keys, and N to denote those used as nonces.
Messages are defined to be the result of composing and en-
crypting basic messages. Specifically, a message M is either

¢ abasic message;
o {My},, the encryption of M with K, or
o (M, ..., M,), the composition of M,, ..., M

where M, M,, ..., M, are messages, n>2, and K€ B is a key.
Now, given a set of message S, an agent has a limited abil-
ity to decrypt and decompose these messages into their
constituents and also built up new message-s by encryption
and composition. Specifically, define S*, the set of messages
deducible from S, to be either 1) any ¢ element of S, 2) M such

n

that {M}, and K are in S¥ 3) M, such that
M, ..., M) isin s*, 4) {M}, such that M and K are in S¥,
and 5) (M], o M) such that each M, is in s*, :

The constructlon presented here can also be viewed as a
free algebra construction over the generators B, tupling and
encryption, with auxiliary operations, call them decrypt and
decompose, , i 2 1, that satisfy the following equations:

decompose(M,, ..., M,) =M,
decrypt (K, {M},) = M.

1<i<n

6 TRACES AND SOME BAsiC ASSUMPTIONS

Let A be the (finite) set of all agents of interest (that is, A
includes not only the principals of the protocol at hand, but
also any adversaries). We view each agent as an automaton,
with a notion of “state” (including information about be-
liefs and nonces), and a set of legal transitions (for the
principals of a protocol, these transitions must be in accor-
dance with the protocol; for adversaries, the possible tran-
sitions are more permissive).

As a first step towards formalizing such a view of agents,
we define a trace, which is a record of agent interactions
(messages sent and received) as well as other agent actions
such as the generation and expiry of nonces, keys and secrets.
These basic interactions are modeled by events, which take
one of the following forms: send(M), indicating that message
M is sent by an agent; receive(M), indicating that message M
is received by an agent; generate(M), indicating that the basic
message M is generated by an agent (M may be either a
nonce or a key); and expire(M), indicating that the message M
has become stale. Events can be subscripted as necessary to
indicate different occurrences of the same event; for example,
if an agent resends a message.

Intuitively, a trace is a specification of a set of events for
each agent A in A. However, we have omitted a crucial
element—time. The simplest way of introducing time is to
associate a time value (for example, a real number) with
each event. Unfortunately, such an approach assumes the
existence of a global clock. In a networked environment,
such an assumption is at best restrictive, and at worst un-
realistic. Instead, we shall use a more abstract time that is
compatible with systems of unsynchronized clocks, as well
as nonstandard notions of time such as Lamport clocks [17].

5. For a public key system, this clause would be modified. Specifi-
cally, where K° denotes the key which is the complement of K, we
would have: M such that {M}, and K’ are in §*.

This is based on a very minimal assumption about time:
Each agent has a local notion of “before” and “after” that
gives a total order on each agent’s events. Then:

DEFINITION 1. (Traces) A trace T is an ‘A indexed collection of
sets of events such that each set is equipped with a total ovder.

T, denotes the set corresponding to the agent A, and T de-
notes the union of all of the T,. The total order on T, is de-
noted by <,; if e <, ¢’ then we say that e precedes ¢’. We write
e<, ¢ if eithere <, ¢’ or e = ¢’. For any event e € T, we write
succ(e) to denote the successor of e if it exists; that is succ(e) is
the earliest event in {¢' : e <, ¢'}. Note that a trace says
nothing about the ordering of events between agents.

The above definition does not admit traces in which two
events happen simultaneously. Such a possibility could be
accommodated by replacing the notion of total order by the
more general notion of a total preorder. However, the extra
structure afforded by simultaneous events is inconsequen-
tial for the security properties identified in this paper, and
so, for simplicity, we shall use total orders. (This bears a
superficial resemblance to the treatment of time in the
model theory of temporal logic [1], [3], [10].)

An agent typically sends a message to some designated
recipient (such information may be implicit in a protocol, or
explicit in the plain text or encrypted parts of messages).
However, we do not assume that the communication me-
dium is secure, and so we do not guarantee that a message is
received only by its intended receiver. Rather, we treat mes-
sages sends as broadcasts to the world; any agent can receive
any message that is sent. Further, we make no assumptions
about the correct behavior of the network—messages may be
completely lost, received by only some agents, or even dupli-
cated due to network failures and errors.

The above sketch of the definition of trace is overly
permissive: It admits traces of agent interactions that are
not physically possible. We now address three aspects of
this issue.

First, between any two events there lie only a finite
number of events. This can be justified on physical grounds;
it is also necessary for technical reasons.

DEFINITION 2. (Bounded) A trace T is bounded if, for all agents
A and all pairs of events e, and e, in T, the set
{e:e, <, e<,e,) is finite. :
Second, it is clear that if a message M is received by an
agent, then some agent must have previously sent M.
Clearly there must be some consistent way of interleaving
the message traces from the various agents such that each
message receive is preceded by a message send (this is
identical to a requirement used by Merritt [20]). Moreover,
we require that this interleaving must be fair. This leads to
the following definition:
DEFINITION 3. (Serializable Traces) A trace T is serializable if
there is a total order < on T such that
1) the ordering < conservatively extends the orderings <, A
€ A, in the sense that if e <, e’ thene < ¢’,

2) each event receive(M) in T is preceded by an event
send(M), and

3) for all pairs of events e, and e,, the set {e : e, < e < &,} is fi-
nite.

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 1, JANUARY 1996

Fairness is expressed by part 3) of this definition. We re-
mark that serializability is only a consistency requirement.
It does not imply a global ordering of events. In general
there will be many such orderings <, and so subsequent
definitions cannot be expressed in terms of a fixed event
ordering. We cannot, for example, state a condition that
beliefs about a particular secret held by different agents
expire simultaneously.

Third, we require that each event of the form generate(M)
creates a new basic message.

DEFINITION 4. (Message Generation) A trace T respects message
generation if, for all distinct events of the form generate(M,) and
generate(M,), the messages M, and M, are distinct.

In what follows, we use the term trace to mean a trace that
is serializable, bounded, and respects message generation.

7 PROTOCOLS AND THE UNTIMED MODEL

The definition of trace (and its associated assumptions) cap-
tures a notion of agent interaction in which agents are
completely free to send and receive messages. This notion
does not take into account the constraints on interaction
imposed by protocols. A protocol typically identifies a sub-
set of agents (the principals of the protocol), and specifies
how these agents should interact with other agents. Such a
specification is usually described as a sequence of message
sends and receives. For example, Fig. 3 presents a variant of
the Otway-Rees protocol [21]. Although this description
gives explicit information about the form of messages to be
sent, a number of side conditions are either implicit or un-
specified. First, it is implicitly specified that the nonces used
must be fresh. Second, it is implicitly specified that the keys
used are appropriate secret keys. Third, the protocol is a
collection of rules describing how an agent should send and
respond to messages; that is, the protocol is not just the se-
quence of four messages, but rather a specification that:

o to establish a session key with B, A should send the
first message of the protocol;

e if B receives this message, then B should respond with
the second message;

° if the server S receives the second message, then S
should send out a new secure key using the third
message;

¢ if B receives the third message, then B should accept
the new key as a secure key for A-B conversations and
also respond with the fourth message, and

 if A receives the fourth message, then the protocol is
complete and A should use the new key for conversa-
tions with B.

Moreover, the variables N,, N, K,, K,, ... are really parame-
ters ranging over nonces and keys etc. That is, a protocol is
really a template for “transactions” between agents. In gen-
eral, this template will be invoked many times. It is there-
fore important to model multiple (and possibly interleaved)
invocations of the protocol; each instance will typically in-
volve different values for the parameters.

In summary, a protocol specifies what an agent should
do next, based on 1) what the agent currently believes

(about keys and nonces) and 2) an event (such as the receipt
of a message).

A—B: A B N, Bl
{NA/ B}K\AI{NB/A}KH
{N4, B, Kuplg, , N3, A, Kaply,

{Ny, B, KAB}KA

B—S:
S—B:
B> A:

Fig. 3. A variant of the Otway-Rees protocol.

We first formalize the notion of beliefs used in our
model. We consider two kinds of beliefs: beliefs about se-
crecy and beliefs about freshness. Compared to a logic such
as the Logic of Authentication, these beliefs are very lim-
ited. In principle, more complex beliefs could be intro-
duced. However, this is not necessary, since the beliefs used
here are only used to capture a very basic notion of agent
state. See Section 3.3 for a discussion of this issue.

A belief is of the form shared(S, M) where S is a set of agents
and M is a message, or of the form fresh(M) where M is a ba-
sic message. Informally, shared(S, M) denotes the belief that
only the agents in S can know about M, and fresh(M) denotes
the belief that M is a recently generated nonce.

An agent state, sTaTE, consists of a set of beliefs and
events (intuitively, this represents an agent’s current set of
beliefs, and the events that it has experienced). Agent be-
liefs are included in agent state to capture an agent’s view
of how a protocol (or protocols) is unfolding: What secrets
are shared, which keys are secure, etc. The fact that an agent
holds a particular belief at a particular time is no indication
that the belief is in fact true. We return to the issue of valid-
ity of beliefs later in this section.

Given a state, we can define the set of messages known
by an agent. From this set an agent can send messages and
construct new beliefs. Define known(state), the meséages
constructible from the information present in srark, to be
the following set:

*

uAa

STATE Contaiﬁs either
M: fresh(M), shared(S, M),
generate(M), or receive(M)

That is, known(sTaTE) consists of messages that appear in
beliefs, messages that have been received or generated,
messages used for naming agents, and all messages deriv-
able from the above messages.

Given an agent A, a set of beliefs and a set of events, a
protocol specifies a set of possible actions for A. Such ac-
tions include sending messages and adding new beliefs to
A’s current beliefs (for example, adding beliefs about newly
established keys). More formally:

DEFINITION 5. (Protocol) A _protocol is a pair (P, &) where P < A
is a set of agents indicating the principals of the protocol, and &
is a collection of functions (8,, A € P). Each function 8, maps
any set consisting of receive events, send events, and beliefs
(these represent the current state of the principal A) into a set
of allowed actions for A. Specifically, if stars is the set input
to &,, then 5, (STATE) is a set consisting of the following two
kinds of elements:

HEINTZE AND TYGAR: A MODEL FOR SECURE PROTOCOLS AND THEIR COMPOSITIONS 23

1) beliefs of the form shared(S, M) where M € known(staTs),
or
2) events of the form send(M) where M e known(STATE).

Elements of the form 1) in 6,(sTATE) indicate new beliefs
that A should add to its set of current beliefs. Elements of
the form 2) indicate messages that A should send. We as-
sume that each function J, is monotonic. Note that we do
not include generate and expiry messages in the notion of
state used in the above definition. The model defines the
meaning of these events, independent of the protocol.

A trace is faithful to a protocol if each principal behaves
in accordance with the protocol. The behavior of an agent
includes message sends as well as the way an agent man-
ages its beliefs. The management of beliefs not only in-
cludes the establishment of new beliefs (as specified by the
protocol), but also the expiry of “stale” beliefs (as indicated
by events of the form expire(M) in the trace). To formalize
this, we must track the beliefs of an agent at each “point in
time.” In general, an agent’s beliefs are essentially an arbi-
trary function of time. However, we wish to avoid introduc-
ing an explicit notion of time. To maintain this level of ab-
straction, we observe that it is only necessary to know an
agent’s beliefs at each event (we shall return to this point
later). Hence, in the context of a protocol (P, 6), we define:

DEFINITION 6. A belief function for a trace T is a mapping from T
into finite sets of beliefs. If e € T,, then beliefs(e) is the (finite)
set of beliefs held by agent A at event e.

A model consists of a trace and a corresponding belief
function, subject to a number of constraints. Before giving
these, we need some additional notation. In the context of a
belief function belief and some event e in T,, define state(e),
the state of agent A at event ¢, to consist of the beliefs in
beliefs(e) as well as the send and receive events that appear

in{e e T,: ¢ <, e}. Define BELIEFS,, the set of beliefs in-
volving M, to be {fresh(M)} U {shared(S, M) : S < ‘A}.

DEFINITION 7. (Model) A model for a protocol (P, 6) is a pair
(T, beliefs) where T is a trace and beliefs is a belief function for
T. Moreover, for each agent A and each eventec T, if A€ P
then:

1) If e is send(M) then e &
2) If e is expire(M) then
o beliefs(succ(e)) = beliefs(e)-BELIEFS,,.
3) If e is generate(M) then
o beliefs(e) c beliefs(succ(e)), and
o beliefs(succ(e)) — beliefs(e) < {fresh(M) shared(S, M)},
for some set S < A.
4) If e is send(M) or receive(M) then
o Dbeliefs(e) < beliefs(succ(e)), and
o beliefs(succ(e)) — beliefs(e) < 8,(state(e) U {e}).
and if A & P then:
5) beliefs(succ(e)) < known(state(e) U {e}).
6) If e is send(M) then M € known(state(e)).
In items 2), 3), 4), and 5), if succ(e) does not exist, then the
condition is vacuously true. Items 1) through 4) constrain the
behavior of protocol principals; items 5) and 6) constrain the
behavior of adversaries. We discuss each collection in turn.

6,(state(e)).

Jtem 1) states that the messages sent by a protocol prin-
cipal accord with the protocol. In conjunction with Defini-
tion 5, part 2) (the definition of protocol), it also implies that
principals can only send messages that they know about.
Items 2) to 4) define the effect of send, receive, expiry and
generation events on agent beliefs. These conditions have
three key consequences. First, deletion of beliefs must cor-
respond to an expiry message. Second, the only possible
effects of a generation event are that beliefs of the form
fresh(M) or shared(S, M) are added to the agent’s belief set.
Moreover, only one belief of the form shared(S, M) may be
added. Third, message send and receive events can only
add new beliefs, and these must accord with the protocol.
Note that in 4), new beliefs added at succ(e) depend on be-
liefs at event e and also on all events preceding succ(e) (this
includes event e). Hence new beliefs are bounded by
O, (state(e) U {e}). In a particular model, an agent is not
forced to do every action outlined by the protocol. Rather,
the protocol constrains what an agent can do. Within this
boundary, an agent is free to choose what actions it will
perform—this choice is typically dictated by factors such as
agent workload, the need to communicate, how recently a
message has been sent (for example, at some stage a mes-
sage may have to be resent because it has been lost).

Items 5) to 6) address nonprincipals. Item 5) states that
the beliefs of an adversary can grow only by either message
generation or by the receipt of messages. Item 6) states that
an adversary can only send messages that it knows about.
In effect these two constraints ensure that adversaries can-
not randomly guess secrets: they can only learn about se-
crets by interactions with other agents. We remark that 5)
and 6) in fact hold for all agents: For protocol principals, the
conditions expressed by 5) and 6) are consequences of the
definition of protocol and items 1) to 4).

We now address the meaning of beliefs. Thus far we
have essentially used beliefs as tokens to capture part of an
agent’s state, independent of what the tokens actually
mean. These tokens have played an important part in for-
malizing the mechanics of our model, and in particular,
how an agent carries out a protocol. Now, to talk about se-
curity of a protocol, we want check whether an agent’s se-
crets and session keys are secure in protocol models. We
therefore need to say what it means for particular beliefs to
hold in the model. We also need to identify which beliefs
must hold. In our model, we shall require that all beliefs of
protocol principals must hold.

We begin by defining what it means for beliefs to hold at
a particular event. One important part of the behavior of
beliefs is that they eventually expire (this allows us to rea-
son about what happens when stale messages are re-
played). This issue is addressed in detail in the next section.
For now, we shall just consider the time-invariant part of
the meaning of beliefs. First consider beliefs of the form
fresh(M). Such beliefs are used to track the behavior of non-
ces: they are generated when a nonce is created, and apart
from that all we require is that they eventually expire. We
consider the issue of expiry in the next section; in this sec-
tion, beliefs of the form fresh(M) are simply considered to be
true. Second, consider beliefs of the form shared(S, M). The
meaning of these beliefs depends on which agents know

24 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 1, JANUARY 1996

about M. That is, a belief shared(S, M) is true if M €
known (e) implies that A € S. To summarize, we define:

DEFINITION 8. (Valid Beliefs). Let (T, beliefs) be a model for pro-
tocol (P, 8). A belief b is valid at some event e € T, if it is either
of the form fresh(M), or of the form shared(S, M) such that if
M € known,(e) then A € S.

This defines a notion of pointwise validity of beliefs, and
provides a basic element of our definition of protocol secu-
rity. However, to obtain a meaningful notion of protocol
security, we cannot just define that all beliefs must be valid
at all events in all models for the protocol. This is inappro-
priate for a number of reasons. First, we are only interested
in the beliefs of principals, since a protocol does not give
any assurances about what happens to nonprincipals. Sec-
ond, no protocol can provide any guarantees about security
when security has already been compromised. Instead, we
shall define protocol security in terms of preservation of
properties: a protocol shall be considered secure if, when-
ever 1t started in an “initially” secure configuration, all sub-
sequent behavior is secure. To formalize this, we first define
what it means for the model to be secure at some “time.”
This is achieved using snapshots, which are cross-sections
of the model.

DEFINITION 9. (Snapshots) In the context of a model (T, beliefs), a
snapshot s is a subset of T that contains exactly one event
(denoted s(A)) from each set T,. A snapshot s is secure if, for all
principals A of F, each element of beliefs(s(A)) is valid at each
event in s.

Next we formalize what it means for a model to be ini-
tialized in a secure state. In the context of a model M, a be-

lief b is an initial belief if, for some agent A and evente e T,,
it is the case that b € beliefs(e), and for each event ¢’ <, ¢, it is

also the case that b € beliefs(¢’). Intuitively, an initial belief is
one that an agent is given at the start of time, as opposed to
a belief that is established by some action of the protocol.
Initial beliefs might include the initial keys for agent-server
communication. The notion of a model being started in an
initially secure state is realized by placing properties on the
set of initial beliefs. Clearly initial beliefs must be “initially
valid.” Furthermore, they must also be consistent in the
sense that beliefs about a message must not conflict. For
example, if for some message M, an agent A, has the initial
belief shared({A,, B,}, M) and the agent A, has the initial be-
lief shared({A, B,}, M), then problems will arise when A,
shares M with B, and A, shares M with B,. In essence, we
prevent this situation by requiring that there is at most one
kind of initial belief about each message. However, in the
case. of beliefs involving messages made up from other
messages, this requirement is problematic. We therefore
require that initial beliefs not contain other messages; that
is, initial beliefs may only involve basic messages.

DEFINITION 10. (Initially-Secure Models) A model (T, beliefs) is
initially-secure if 1) there is a snapshot s such that all initial
beliefs of principals are valid at all events in {e: e < e’ for some
¢ € stand A in A; and 2) all initial beliefs are of the form
shared(S, M) or fresh(M) where M is a basic message that is
not generated by some event in T, and 3) if shared(S,, M) and
shared(S,, M) are both initial beliefs then S, = S,

The notion of “initially-secure” is defined not by consid-
ering security at a specific snapshot, but rather security at
events in and preceding the snapshot, because there may be
messages in transit that are not represented by a single
snapshot. We can define protocol security in terms of the
preservation of security:

DEFINITION 11. (Secret-Security) A model (T, beliefs) is secret-
secure if, for all principals A of P and for all e e T,, each ele-
ment of beliefs(e) is valid at each event in T. A protocol (P,) is
secret-secure if all initially-secure models for (P, §) are secret-
secure.

This definition provides a rudimentary notion of proto-
col security: in essence, a protocol is secure according to this
definition if agents do not reveal secrets. In the next section,
we enrich this definition with a mechanism for reasoning
about the freshness of nonces. In doing so, we obtain a
definition of protocol security supporting reasoning about
security attacks based on stale message replay.

We discuss the definitions given thus far. First, consider
the definition of traces. In general, the sets T, that make up
a trace T are unbounded in both directions. That is, there is
no requirement for an agent to have a “start” or “end”
event. In many contexts however, a protocol is started in
some initial state. In this case, it is reasonable to restrict
traces so that each set T, has an initial event that precedes all
other events. Models that are constructed from such traces
shall be called directed models. This subclass of models gives
rise fo a medified definition of secret-security:

DEFINITION 12. (Directed Secret-Security) A- protocol is
directed secret-secure if all initially-secure directed models for
the protocol are secret-secure.

Th_lS alternative definition turns out to be strictly
weaker® than the previous definition (Definition 11). It also
has certain technical advantages, which shall be employed
when we consider composition of protocols.

Second, consider belief functions. Their purpose is to
capture the beliefs of each agent at each point in time.
However, instead of using a concrete notion of time, we
chose to just describe the beliefs at each event. In essence,
we use events themselves to reason about time. We now
argue that this results in no loss of generality. The main
simplification afforded by the use of events to index an
agent’s belief sets is that all information about what hap-
pens to an agent’s beliefs between two events is ignored.
Now, such information does not affect what messages an
agent can send, because the only beliefs relevant to message
sending are those current at the time of the send event.
Hence, the only possible impact of the new structure is that
there may be new beliefs that appear after one event and
disappear before the next event. However, this cannot hap-
pen, because the only mechanism for an agent to drop a
belief is via an event of the form expire(M).

Third, consider the behavior of beliefs about shared keys.
Suppose that a belief shared(S, M) is held by a principal A at
some event e in some initially secure model of a secret-
secure protocol. By definition, this implies that shared(S, M)

6. However, the two definitions coincide for most protocols arising
in practice.

HEINTZE AND TYGAR: A MODEL FOR SECURE PROTOCOLS AND THEIR COMPOSITIONS 25

is valid at all events in the model. Hence, given any
initially-secure model of a secret-secure protocol, all beliefs
held by principals of the protocol are true at all events in
the model. In other words, beliefs of principals are univer-
sally valid. '

One implication of this property is that if a principal
holds a belief shared(S, M) at some event in the model, then
only agents in S can ever see the message M. In other
words, when holding a belief about secrecy, an agent must
know all of the agents that will share the secret. While this
seems like a useful property to require, it is arguably re-
strictive. For example, it is not possible to add a mechanism
to the model that allows an agent to hold a belief of the
form shared({A}, M) and then share the secret M with an-
other agent B and update its belief to shared({A, B}, M). We
remark that the main feature of our model that is responsi-
ble for the “universal validity” property is the abstract
treatment of time. In particular, no assumptions are made
about synchronization between agents.

We conclude this section with some general comments
about our treatment of beliefs. Recall that one component of
our model is the specification of the sets of beliefs for each
event at each agent via belief functions. This captures the
evolving nature of beliefs during (possibly interleaved) exe-
cutions of a protocol, and is necessary to account for the
behavior of agents. For example, in a protocol such as the
Otway-Rees protocol (Fig. 3), agents A and B participate
only if they believe that their initial keys for server
communication are secure. More correctly, they will only
participate using server-keys that they believe are secure.
Hence, beliefs are viewed as an integral part of an agent’s
state, quite independent of whether or not the beliefs ac-
tually hold. In this view, beliefs are part of the mechanism
of the model and are internal to it.

Beliefs also have a status as statements which are either
true or false at some particular event or snapshot in a
model. In this view, beliefs are external to the model and
they derive their meaning from the model. So, beliefs have
both an “internal” and “external” role to play. This does not
involve any inconsistency or mutual dependency because
in the internal role, beliefs are manipulated as “data,” inde-
pendent of the truth-meaning given to them in their exter-
nal role. To illustrate this point, note that adversaries may
have beliefs, but we ignore the validity of these: our model
only requires that protocols respect and preserve the beliefs
of the principals.

8 BELIEFS AND TIME

The treatment of time is one of the most important aspects
of the analysis of a protocol. Typically the security proper-
ties of a protocol rely on the generation and expiration of
nonces to ensure that certain information is fresh. Further, it
is expected that propositions such as “this key is a secure
key” do not hold forever, but expire when the key becomes
stale.

Consider the behavior of nonces. Once generated, nonces
typically have some predetermined finite lifetime. For ex-
ample, a finite life § may be specified so that if a nonce is
generated at some time £, then it is only fresh until time ¢ + 6.

Of course, 6 may vary from nonce to nonce. Instead of com-
mitting to a specific mechanism, we employ a simple and
abstract characterization: each nonce eventually expires. This
is formalized by requiring that if an agent holds a belief of the
form fresh(M) at some event, then there exists a later event of
the form expire(M). Since the only mechanism for an agent to
add fresh(M) to its set of beliefs is via an event of the form
generate(M), and each such event is guaranteed to generate a
new basic message, it follows that each nonce eventually ex-
pires and is never again considered fresh.

Now consider beliefs held by agents. Again, they have a
limited life. One difference between nonces and beliefs is
that a nonce is believed to be fresh simply on the basis of
when it was generated. On the other hand, beliefs are es-
tablished on the basis of the protocol and the messages that
have been received. This means that a belief may be estab-
lished at some time, considered to be stale at some later
time, and then be reestablished at yet another later time. An.
appropriate expiry condition for beliefs is: if an agent holds
a belief of the form shared(S, M) at some event, then there
exists a later event of the form expire(M). In particular, this
implies that the only way for an agent to maintain a belief
indefinitely is for the belief to be enabled indefinitely. These
ideas lead to the following definition:

DEFINITION 13. (Time-Secure) A model for a protocol (P is a
timed model if for each principal A of P and event e € T,, if
beliefs(e) contains a belief of the form shared(S, M) or
fresh(M), then there exists an event ¢’ > e such that e is ex-
pire(M). A timed model is time-secure if, for all principals A of
B, if b is a belief that is held by A at some event, then there is
an event e € T, such that b is not held at any event following
e. A protocol P is time-secure if each initially secure timed
model for P is time-secure.

This definition does not distinguish between the expiry
requirements of different kinds of beliefs. In particular, dif-
ferent keys may have very different lifetimes. For example,
agent-agent session keys have only a short lifetime com-
pared to server-agent keys. To investigate the impact of this
distinction on security in our model we can do the follow-
ing. First, we give a classification of beliefs into short-term
and long-term beliefs. Then, we view long-term beliefs as
having an infinite lifetime compared to short-term beliefs.
This can be achieved by adapting the above definition so
that only the short-term beliefs are required to expire. The
result is a definition of time-security that is relative to a
particular distinction between short-term and long-term
beliefs. To analyze a protocol, it may be appropriate to con-
sider time-security properties with respect to a number of
different short-term/long-term distinctions. Note that the
two limiting cases of the short-term/long-term distinction
are secret-security (when all beliefs are long-term) and time-
security (when all beliefs are short-term).

The secret-security definition imposes an abstract re-
quirement for belief expiry. In particular, there is no notion
of scheduling or ordering of belief expiry: later beliefs can
expire before earlier ones, and beliefs established using se-
cure keys can outlive belief in the security of the key. The
intention is that our model includes all potential behaviors
of a system. (A specific system may of course enforce a par-

26 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 1, JANUARY 1996

ticular strategy for constraining the way beliefs expire. In
the unlikely event that security properties critically depend
on such specifics, one could modify our model to take them
into account.)

Why does the definition of time-secure capture an im-
portant notion of security? One protocol failure mode is
where an adversary replays sequences of old messages to
attempt to convince a principal of the validity of a belief.
However, in certain circumstances, this may be secure. For
example, suppose an agent A sends a message M to another
agent B that is intercepted by an adversary Z and does not
reach B. Soon afterwards, Z resends M to B. Now, from B’s
point of view, there is no essential difference betrween this
situation and a situation where network latency is abnor-
mally high. In other words, that fact the Z was able to re-
play a previous message to convince B of a certain belief b
was not significant in this case.

As another example, consider a modification of the above
scenario. Suppose this time that B receives the message the
first time and then believes b. At some later time B then dis-
cards the belief b. Then suppose that Z resends M, and on
receiving M, B re-establishes its belief in b. (This may happen
for example if the time-out interval for the belief b was sig-
nificantly shorter than the time-out interval for nonces). This
situation does not differ in an essential way from the situa-
tion where network problems result in two copies of M being
received by B, one significantly before the other, and so again
this does not indicate a protocol security problem.

Contrast these two examples with the situation where Z
is able to replay M indefinitely to convince B of b (as would
be the case if M did not contain any nonces). It is exactly the
distinction between these two kinds of behavior that the
above definition of security is seeking.

Protocol security can now be defined by combmmg the
definitions of secret-secure and time-secure:

DEFINITION 14. (Protocol Security) A protocol is secure if it is
both secret-secure and time-secure.

We provide some informal justification for our use of a
very abstract notion of time: Clearly, from the point of view
of generality, it is desirable to avoid including a specific
time framework in the definition model. However in doing
so, we must address the issue of whether the resulting
definition is generally applicable, because the notion of se-
curity may be depend on the notion of time. In other words,
we must consider the relationships between an appropriate
notion of security in the context of a specific time frame-
work and the definition of security obtained by our more
abstract definition of model.

Our definition of security is essentially equivalent to any
reasonable definition in the context of a specific notion of
time. In other words, our definition captures the essence of
what it means for a protocol to be secure. In Appendix A, we
provide evidence for this assertion by comparing three mod-
els with different notions of time: one is an early version of
the model presented in this paper, and the other two differ
only in that they incorporated specific notions of time.

We conclude this section by proving that a number of se-
curity properties are undecidable. We conjecture that this
result extends to cover all models with similar features to

our model. However, it appears likely that there are inter-
esting subclasses of protocols that can be defined by syn-
tactic restrictions on the definition of protocol, for which
security is decidable.

THEOREM 1. Given a protocol P, the following questions are un-
decidable:

1) Is P secret-secure?
2) Is P time-secure?

PROOF SKETCH. We have defined protocols as transition sys-
tems, and as a result it is straightforward to express
Post’s correspondence problem [18] as a security ques-
tion. In particular, it is easy to code any instance of Post’s
correspondence problem as a protocol such that a belief
of the form shared({A}, M) can be held by an agent A if
and only if there is a solution to the correspondence
problem. Moreover, we can arrange for M to be some
message which is not secret (that is, M may be know to
agents other than A). Hence the protocol is secret-secure
if and only if the correspondence problem has a solution.
This outline proves 1). The remaining parts can be
proved by similar methods. O

We remark the above result exploits the generality of the
definition of protocol and the inherent power of the tupling
operation, but makes only minimal use of encryption. In
contrast, previous undecidability results for protocol secu-
rity use complex algebraic properties of richer encryption
systems. For example the proof of undecidability for half-
word ping-pong protocols [13] relies on the structure of a
more general encryption-decryption scheme that allows
commutativity of some pairs of operators.

9 CoMPOSITION OF PROTOCOLS

Consider the problem of combining protocols. That is given
protocels p, = (P,, §) and p, = (P,, &), we wish to obtain
their composition p, U p, defined by (P, U P, sué), where
8" U & denotes the pointwise union of &' and &. Ideally, we
would like the individual security properties of p, and p, to
carry over top, U p,.

First suppose that p, and p, are both secret—secure we
would like to show that this implies p, U p, is secret-secure.
This is not possible in general because one protocol may
interfere with the other. For example, consider the two
(nonsensical) protocols in Fig. 4. In the first protocol, agent
A shares its secrets with B by encrypting them with a
shared key and sending them to B. The second protocol is
similar, but here agent B shares secrets with agent A; the
first message of the protocol is sent by A to indicate that it is
“ready” to accept B’s secrets. Both protocols are secret-
secure since they do preserve secrets.’ However, the union
of these two protocols is not secret-secure. This is because
the first step of the second protocol may send a message of
the form {M}, such that M is some arbitrary message, and
the second step of the first protocol may use this message to

7. Although they are not secure since nonces are not used to protect
secrets, and as a result the protocols are not time-secure.

HEINTZE AND TYGAR: A MODEL FOR SECURE PROTOCOLS AND THEIR COMPOSITIONS 27

deduce that M is a shared A — B secret, which is obviously
not true in general. The problem is that messages of the
form {(A, M)}, have incompatible uses in the two protocols.
In the first protocol {(A, M)}, indicates that A believes M is a
shared secret between A and B. In the second, {(A, M)}, in-
dicates nothing about the secrecy of M.

_[A: shared({A, B}, K), shared({A, B}, M)— send({(A, M)})
PiB: shared({A, B}, K), receive({(A, M)},) — shared({A,B}, M)

A: shared({A, B}, K) — send({(A, M)}y)
B: receive({(A, M)}y), shared({A, B}, K), shared({A, B}, M")
2% — send({(B, M")}y)
A: shared({A, B}, K), receive({(B, M)}y)
— shared({A, B}, M)

Fig. 4. Two secret-secure protocols whose composition is not secret-
secure.

Now, at an intuitive level, if protocols (B, 51) and

(P, 6 2} do not “interfere” in this sense, then we may expect
composition to preserve security properties. First, define for
a protocol p, that sends(p) is the set of all messages sent in
all secure models of p. More specifically, sends(p) is the set of
all events of the form send(M) that appear in T, in some se-
cure model (T, beliefs) of p. A form of noninterference can
now be defined as follows:

DEFINITION 15. Where p, = (P,, &) and p, = (P,, &) are protocols,
p, is message independent with respect to p, if, for all sets
STATE and A € P, 8 (STATE) = 8, (STATE — sends(p,)).

Unfortunately this definition is not sufficient to prove pres-
ervation of secret-security. The failure is due to technical
reasons arising from the unbounded nature of models.
However, by restricting attention to directed models we can
obtain a composition theorem. The following result shall
additionally use two conditions: if (T, beliefs) is a secret-
secure model of p, U p, then

1) all beliefs held by principals in the model have the
form shared(S, M) where M is a basic message, and

2) for all secure directed models (T, beliefs) of p, U p,,
there exists a secure directed model (T", beliefs’) of
p, U p, such that:

e adversaries do not send any messages in T, and
o for each event e in T,, there exists an event ¢ in
T, such that known(e) < known(e’), beliefs(e) < be-
liefs'(¢"), and all beliefs in &(state(e)) also appear in
S(state’ ().
The first condition says that, in all secure models, there are
no beliefs involving compound messages or non-principals.
This condition simplifies part of the proof; although it is
likely that this condition could be weakened (or perhaps
eliminated), it is already satisfied by typical protocols. The
second states that, unless security is violated, the messages
from adversaries do not have a significant effect on the be-
havior of a protocol. Specifically, it specifies that for any
secure model, there is a secure model where adversaries do
not send messages such that this secure model is

“equivalent” to the original model in the following sense:
for each event e in the original model, there is an event ¢ in
the new model with essentially the same behavior. These
conditions involve reasoning about secure models only, and
are typically much easier to verify than checking the secu-
rity of the combined protocol p, U p,.

THEOREM 2. Let p, and p, be protocols that are mutually message
independent and satisfy conditions 1) and 2). If p, and p, are
directed secret-secure then their composition p, U p, is also di-
rected secret-secute.

PROOF. Suppose that p, U p, is not directed secret-secure.
Then there exists a directed model of p, U p,, call it m,
that is initially secure, but not universally secure. The
proof now proceeds by using the model m to construct a
model showing that either p, or p, is not secret-secure.
This construction proceeds in three steps.

The first step uses condition 2) to show that there ex-
ists a model m’ of p, U p, such that

e m is initially secure but not universally secure;
e there are only a finite number of events in m’;
e adversaries do not send any messages in m’.

The second step uses the model m” to construct a model
m” that satisfies the same conditions as 7 and in addition
does not contain any message generation or expiry events.
The purpose of this step is to simplify the cases that must
be considered in the following constructions.

The final and most intricate step uses the model m” to
construct either 1) a model of p, that is initially secure but
not universally secure or 2) a model of p, that is initially
secure but not universally secure. This part proceeds by
incrementally constructing a model m, of protocol p, and
m, of protocol p,. In essence, each event from m” is con-
sidered in turn (using the total ordering on events in m”
that is required to exist by the serializability assumption),
and either adding it to m, (if the event corresponds to
protocol p,) or to m, (if the event corresponds to protocol
p,). Additional constructions are required at each step to
ensure that m, and m, are maintained as legal, initially
secure models of p, and p,. Importantly, when all events
from m”’ have been considered, it is the case that either m,
or m, is not universally secure. It follows that either p, or
p, is not secret-secure. The key assumption used in this
final step is the message independence assumption.
We remark that condition 1) is used throughout the
proof. O

To conclude this section, consider the case where p, and
p, are time-secure. The compositionality results attainable in
this case appear to be much weaker than for secret-security.
One of the key problems is illustrated by the two protocols
in Fig. 5. In the first protocol, agent A shares its secrets with
B by encrypting them with a shared key and sending them
to B. The second protocol is the converse of the first. The
combined protocol p, U p, is not time-secure because of the
following type of scenario: agent A gives secret M to B; the
secret M then expires at A; B gives M back to A; the secret
M then expires at B; A gives secret M to B, and so on. Any
compositionality results involving time-security must

28 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 1, JANUARY 1996

clearly involve conditions to prevent the types of circularity
that are illustrated in the example.

[A: shared ({A, B}, K), shared ({ A, B}, M)~ send ({{A, M)})
PPB: shared ({A, B}, K), receive({(A, M)}y) — shared ({A, B}, M)
_[B: shared ({A, B}, K), shared ({A, B}, M) — send ({(B, M)})
P24 4 shared ({A, B}, K), receive ({ (B,M)},) — shared ({ A, B}, M)

Fig. 5. Two time-secure protocols whose composition is not time-
secure.

10 TowaRrDS MODEL CHECKING

Model theoretic frameworks open a new line of attack for
proving security properties: model checking [7], [8], [9]. In
this paper, security is defined in terms of properties that
hold over a class of models. In principle, one could check
the security of a protocol by constructing each model in the
class, and checking to see that the appropriate property
holds. Clearly, this procedure is not effective because there
are an infinite number of models that must be checked, and
these models themselves can be infinite. However, for cer-
tain syntactic classes of protocols, the problem of checking
protocol security may be reduced to looking at a subclass of
models whose behavior can be finitely represented using
set constraints [15]. The key property of this subclass of
models is that if the protocol is secure in this subclass, then
it is secure in all models.

APPENDIX A
VARIATIONS OF THE SECURITY DEFINITIONS

We provide a justification for the abstract nature of our
model definition by showing that different and more con-
crete notions of model do not lead to different notions of
security.

A.1 Ordered Lifetimes

We begin by considering a variation of our model definition
where the order of belief expiration is that same as belief
generation. To formalize this, let (T, beliefs) be a model of a
protocol P. An event segment for an agent A is a subset of the
events in T, such that if ¢, and e, are in the subset, then for
any e € T, such thate, <, e <, ¢, it must also be the case that
e is in the subset. In other words an event segment is a con-
tiguous subsequence of the events in T,. Note that seg-
ments are always finite because of the boundedness condi-
tion (Definition 2). An event segment L is a A-lifetime (or
just lifetime) for a belief b if b is held by A at each event in L,
and L is a maximal segment with this property (that is, b is
not held by A at the events immediately preceding L and
immediately following L). In general, a belief may have
several A-lifetimes. A model (T, beliefs) respects belief lifetimes
if, for each protocol principal A, whenever L, and L, are A-
lifetimes then L, ¢ L, implies L, = L,. Intuitively, this says
that the expiry of beliefs respects the order of belief estab-
lishment: if a belief b is established before b” then b will ex-
pire before b’.

Now, define alternative notions of secret-secure and

time-secure by restricting the standard definitions to mod-
els that respect belief lifetimes. Such definitions are
equivalent to the original definitions. This is because any
model that is not secure can be modified by extending the
lifetimes of the various nonces and beliefs (and possibly
adding some extra dummy events) in such a way that 1) the
modified model is not secure (it essentially has the same
structure as the original model) and 2) the.lifetime condi-
tion is satisfied.

A.2 Global Clocks

We next consider a more concrete definition of time using
global clocks and bounds on the expiry of nonces and be-
liefs. Suppose that each agent is equipped with a clock and
that these clocks are synchronized. Each event will be
timestamped (with a real number) according to the time
that it occurred. This timestamping respects message send-
ing/receiving: if a message M is received by some agent at
some time £, then M must have been sent by some agent at
time t/, for some t’ < t. Further suppose that each agent
holds a belief for no more than some fixed time € before it
expires. We call these global clock models. (It is also possible
to consider models where there is some lower bound on
lifetimes, or alternatively where there is a fixed lifetime for
all secrets and nonces. In the latter case we could need to
allow simultaneous events.)

Using global clock models, we can give definitions of
secret-security and time-security analogous to those given
in the main part of this paper. These resulting definitions of
protocol security are in fact equivalent to the original defi-
nitions. This is because given any global clock model that is
not secure, we can construct a standard model that is not
secure, and conversely, given an standard model that is not
secure, we can construct a global clock model that is not
secure. The first part is easy, because given any global clock
model, we can just ignore the timing information and ob-
tain a standard model with the same essential structure.

Showing the converse is more difficult. Suppose that we
have a standard model that is not secure. By definition, there
must be some total ordering < of all of the events in the stan-
dard model such that message receives are preceded by mes-
sage sends (see Definition 3). This ordering forms the basis of
our construction of a global clock model. Let T denote the
trace of all events in the model, ordered by <.

What we need to do is associated a time with each event
in the trace T, and the problem is how to do this in such a
way that the expiry timing constraints are satisfied. In par-
ticular, what happens when the generation and expiry of
beliefs is nested: that is, when belief b, is established at time
t, and expires at time #;, belief b, is established at time £,
and expires at time £, and £, <f, <f; <t].

We begin with some definitions. We previously defined
the notion of a segments for an agent A as certain subsets of
T, We now generalize this definition and define T-
segments to be subsets of T such that if two events are in
the segment, then so are all events in between.

We now show that each event in T can be associated
with a T-segment of events such that the assignment of
times to the events in the T-segment can be done essentially
independently of the assignments to events outside the T-

HEINTZE AND TYGAR: A MODEL FOR SECURE PROTOCOLS AND THEIR COMPOSITIONS 29-

segment. Let e € T and consider all of the beliefs b held at e.
Each belief can be identified with a lifetime L, where e € L,.
For each such lifetime, there is a minimal T-segment that
contains L,. Pick a T-segment that is maximal among all
such T-segments, and denote it by maxseg,.

Now, consider the strategy for assigning times to a T-
segment of events e, ¢, ..., €, (Where ¢, < ¢, < --- <¢,). We
assume that either 1) some (possibly empty) initial subse-
quence of the T-segment already have times, and the re-
maining elements do not, or 2) some (possibly empty) final
subsequence of the T-segment already have times, and the
remaining elements do not. In the first case, suppose that
e, ..., ¢ already have times ¢, ---, t, for some i, 1 <i<n, and
letd = (e— (t,— t,)) and assign times ¢, + (jx d) toe, i <j<n
(so that the times assigned to e, ..., e, evenly divide up the
interval [£, {, + €]). In the second case, suppose thate, ..., e,
already have times t, ---, t,, for some i, 1 <i <n, and let
d=(e—(t,—t)) and assign times ¢, - (fxd) toe, 1 <j<i.

To complete the construction of a global clock model, we
apply this strategy as follows. First, pick some event e from
T and apply the strategy to maxseg, Then pick the event
immediately following e (if it exists) and apply the strategy.
Next, pick the event immediately preceding e (if it exists)
and apply the strategy. Then repeat the process, alternately
picking events succeeding and preceding e. This process is
guaranteed to eventually reach all events in T (this follows
from part 3) of Definition 3). Moreover, the use of maxseg,
ensures that the time assignment strategy can be success-
fully applied (importantly, we never consider a T-segment
that is completely subsumed by another T-segment).

We conclude this section with an observation about
global clock models. In particular we address the question
of whether, in the context of global clock models, the defi-
nition of secure protocol yields any explicit timing guaran-
tees. The models used in the main part of this paper ensure
only that a belief will eventually expire. Hence, if an agent
A shares a secret with some other agents using a time-
secure protocol, then A is guaranteed that the other agent’s
beliefs about the secret will eventually expire, but no bound
is placed on when this will happen. However, using global
clock models, we might expect that A has tighter guaran-
tees about the lifetime of the secret. This is not the case in
general because the secret may be passed from one agent to
another. Each such pass gives rise to a (worst-case) € delay
in the expiry of the secret. We conjecture that for a given
time-secure protocol there is some fixed N such that shared
secrets are guaranteed to expire within time N x . We be-
lieve that for many protocols used in practice we can de-
velop syntactic criteria to determine this index N.

ACKNOWLEDGMENTS

Nevin Heintze was supported in part by IBM through a
graduate fellowship, and in part by the Defense Advanced
Research Projects Agency, CSTO, under the title “The Fox
Project: Advanced Development of Systems Software,”
ARPA Order No. 8313, issued by ESD/AVS under Contract
No. F19628-91-C-0168. J. D. Tygar was supported in part by
ARPA Contracts F33615-90-C-1465 and. F33615-93-1-1330,
National Science Foundation Presidential Young Investiga-

tor Grant CCR-8858087, matching funds from Motorola and
TRW, a contract from the United States Postal Service, and
by an equipment grant from IBM.

REFERENCES

[1] M. Abadi, “The power of temporal proofs,” Proc. Second IEEE
Symp. Logic in Computer Science, pp. 123~130, June 1987.

[2] M. Abadi and M. Tuttle, “A semantics for a logic of authentica-
tion,” Proc. of ACM Symp. Principles of Distributed Computing, Aug.
1991.

[3] J. van Benthem, “Time, logic and computation,” Linear Titme,
Branching Time and Partial Order in Logics and Models for Concur-
rency. J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, eds.,
Springer-Verlag, pp. 1-49, June 1988.

[4] P Bieber, “A logic of communication in hostile environment,”
Proc. IEEE Computer Security Foundations Workshop III, pp. 14-22,
Los Alamitos, Calif., June 1990.

[5]1 R. Bird, I. Gobal, A. Herzberg, P.A. Janson, S. Kutten, R. Molva,
and C.M. Yung, “Systematic design of a family of attack-resistant

* authentication protocols,” J. Selected Areas in Comm., vol. 11, no. 5,
pp- 679-693, June 1993.

[6] M. Blum and S. Goldwasser, “An efficient probabilistic public-key
encryption scheme which hides all partial information,” Advances
in Cryptology: Proc. of CRYPTO’84, Springer-Verlag LNCS no. 196,
1984.

[71 J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang.
“Symbolic model checking: 10” states and beyond,” Information
and Computation, vol. 98, no. 2, pp. 142-170, June 1992.

[8] E.M. Clarke and E.A. Emerson “Synthesis of synchronization
skeletons for branching time temporal logic,” Logic of Programs:
Workshop, Lecture notes in Computer Science. vol. 131. Yorktown
Heights, N. Y.: Springer-Verlag, May 1981.

[9] EM. Clarke, E.A. Emerson, and A.P. Sistla, “Automatic verifica-
tion of finite-state concurrent systems using temporal logic speci-
fications,” ACM Trans. Programming Languages and Systems, vol. 8,
no. 2, pp. 244-263, 1986.

[10] J. Burgess, “Basic tense logic,” Handbook of Philosophical Logic,
Volume II: Extensions of Classical Logic, E. Gabbay and E
Guenthner, eds., pp. 89-133. Kluwer Academic Publishers, 1986.

[11] M. Burrows, M. Abadi, and R. Needham, “A logic of authentica-
tion,” ACM Trans. Computer Systems, vol. 8, no. 1, pp. 18-36, Feb.
1990. Also see Research Report no. 39, DEC SRC, 48 pp., 1989.

[12] D. Dolev and A. C. Yao, “On the security of public key proto-
cols,” IEEE Trans. Information Theory, vol. 29, no. 2, Mar. 1983.
Also appears in the 22nd FOCS, 1981.

[13] S. Even and O. Goldreich, “On the security of multi-party ping-
pong protocols,” Proc. 24th IEEE Symp. Foundation of Computer
Science, pp- 34-39, Oct. 1983.

[14] S. Goldwasser and S. Micali, “Probabilistic encryption and how to
play mental poker keeping secret all private information,” Proc.
14th ACM Symp. Theory of Computing, 1982.

[15] N. Heintze and J. Jaffar, “A decision procedure for a class of Her-
brand set constraints,” Proc. Fifth IEEE Symp. Logic in Computer
Science, pp. 42-51, June 1990.

[16] T. Kasami, S. Yamamura, and K. Mori, “A key management
scheme for end-to-end encryption and a formal verification of its
security,” Systems, Computers, Control, vol. 13, pp. 59-69, 1982.

[17] L. Lamport, “Time, clocks and the ordering of events in a distrib-
uted system,” Comm. ACM, vol. 21, no. 7, pp. 558-565, July 1978.

[18] H.R. Lewis and C. Papadimitriou, Elements of the Theory of Compu-
tation. Prentice-Hall, 1981.

[19] C.A. Meadows, “Applying formal methods to the analysis of key
management protocol,” J. Computer Security, vol. 1, pp. 5-53, 1992.

[20] M.]. Merritt, “Cryptographic protocols,” PhD thesis, Georgia
Instit. of Technology, Feb. 1983.

[21] D. Otway and O. Rees, “Efficient and timely mutual authentica-
tion,” Operating Systems Review, vol. 21, no. 1, pp. 8-10, Jan. 1987.

[22] P. Syverson and C. Meadows, “A logical language for specifying
cryptographic protocol requirements,” Proc. 1993 IEEE Symp. Re-
search in Security and Privacy, May 1993.

[23] P. Syverson, “The use of logic in the analysis of cryptographic
protocols,” Proc. 1991 IEEE Symp. Research in Security and Privacy,
May 1991.

30 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 1, JANUARY 1996

[24] P. Syverson “Adding time to a logic of authéntication,” Proc. First
ACM Conf. Computer and Comm. Security, Fairfax, Va., Nov. 1993,

Nevin Heintze received the BSc and Msc
degrees in mathematics and computer science
from Monash University, Melbourne Australia,
and the PhD degree in compuier science
. from Carnegie Mellon University, Pittsburgh,
. Pennsylvania. He is now a member of the
.~ technical staff at AT&T Bell Laboratories, Murray
Hill, New Jersey. His interests include security,
programming languages, program analysis, and
types. He developed the Set-Based Analysis
system for ML.

J.D. Tygar (M'82) is an associate professor of
computer science at Carnegie Mellon University.
He received an AB degree from the University of
California at Berkeley and his PhD degree from
Harvard University. His recent research focuses on
computer security and electronic commerce. His
current projects include the Dyad secure
coprocessor system, the NeiBill electronic
commerce systems (directed jointly with Marvin
Sirbu), and cryptographic postal indicia standards.
He was named a Presidential Young Investigator.
He consults widely for industry and government.

