In Proceedings of the 40th IEEE Computer Society International Conference, Spring 1995, pp. 20-25

NetBill: An Internet Commerce System
Optimized for Network Delivered Services

Marvin Sirbu
Engineering and Public Policy Dept.

J.D. Tygar
Computer Science Dept.

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

Netbill is a business model, set of protocols, and
software implementation for commerce in information
goods and other network delivered services. It has very
low transaction costs for micropayments (around 1¢ for a
10¢ item), protects the privacy of the transaction, and is
highly scalable. Of special interest is our new certified
delivery mechanism which delivers information goods if
and only if the customer has paid for them. This paper
discusses the design of the NetBill protocol and our World
Wide Web (WWW) prototype implementation

Introduction

As the explosive growth of the Internet continues, more
people rely on networks for timely information. However,
since most information on the Internet today is free,
intellectual property owners have little incentive to make
valuable information accessible through the network.
There are many potential providers who could sell
information on the Internet and many potential customers
for that information. What is missing is an electronic
commerce mechanism that links the merchants and the
customers.

NetBill is a business model, set of protocols, and
software implementation allowing customers to pay
owners and retailers of information. While NetBill will
enable a market economy in information, we still expect
that there will be an active exchange of free information.

The market for information

Porat and others have shown that information industries
dominate the economy [1]. Estimates of the market for
on-line information vary from $10 billion to $100 billion
per year depending upon how the market is defined [2].
There are more than 15,000 databases accessible over
networks. Vendors can distribute information products
varying from complex software valued at thousands of
dollars per copy, to journal pages or stock quotes valued at
a few pennies each. A challenge for network-based
electronic commerce is to keep transaction costs to a small
fraction of the cost of the item. The desire to support
micropayments worth only a few pennies each is a driving
factor in the NetBill design.

A second challenge in the information marketplace is
supporting micromerchants, who may be individuals who
sell relatively small volumes of information. Merchants
need a simple way of doing business with customers over
networks, so that the costs of setting up accounting and
billing procedures are minimal. A model for
micromerchants is the French Minitel system, which
provides 20,000 “kiosks” offering computer-based
services to Minitel users. Many of these kiosks are
provided by small entrepreneurs who enter the
marketplace for little more than the cost of a PC and the
labor to acquire or develop valuable information.

The purchase of goods over a network requires linking
two transfers: the transfer of the goods from the merchant
to the customer, and the transfer of money from the
customer to the merchant. In the case of physical goods, a
customer can order the goods and transfer money over the
network, but the goods cannot be delivered over the
network. Information goods have the special
characteristic that both the delivery of the goods and the
transfer of money can be accomplished on the same
network. This allows for optimizations in the design of an
electronic commerce system.

A NetBill scenario

Figure 1 shows NetBill’s model. A user, represented by
a client computer, wishes to buy information from a
merchant’s server. A NetBill server maintains accounts
for both customers and merchants. These accounts are
linked to conventional financial institutions. A NetBill
transaction transfers the information goods from merchant
to user, and debits the customer’s account and credits the
merchant’s account for the value of the goods. When
necessary, funds in a customer’s NetBill account can be
replenished from a bank or credit card; similarly funds in a
merchant’s NetBill account are made available by
depositing them in the merchant’s bank account.

The transfer of an information good consists of
delivering bits to the customer. This bit sequence may
have any internal structure, for example, the results of a
database search, a page of text, or a software program.
Users may be charged on a per item basis, or by a

subscription allowing unlimited access, or by a number of
other pricing models.

Network

Service
Provider

NetBill Server

Bank .
Fi
gure 1

Once the customer receives the bits, there are no
technical means to absolutely control what the customer
does with them. For example, suppose an information
provider wants to charge a different price for pages viewed
on-line, versus printed pages. The merchant can provide
customers with client software distinguishing viewing
from printing, and which initiates a new billing transaction
when the screen is printed. However, there are no
technical means to prevent the user from tampering with
that software once it is on her machine; a corrupt user who
has only paid to view the bits could thus bypass the charge
for printing. Merchants may still choose to distribute
special software in the belief that tampering will be
infrequent. Similarly, there is no technical means to
prevent users from violating copyright by redistributing

information [3].

NetBill design

There are a number of challenges to making electronic
commerce systems feasible:

e High transaction volumes at low cost. 1f information is
sold for a few pennies a page, then an electronic
commerce system must handle very large transaction
volumes at a marginal cost of a penny or less per
transaction.

o Authentication, privacy and security. The Internet
today provides no universally accepted means for
authenticating users, protecting privacy, or providing
security.

e Account management and administration. Users and
merchants must be able to establish and monitor their
accounts.

This paper describes the architecture of NetBill, a system
designed to meet these goals. Our students and we have
implemented three generations of NetBill prototypes. We
hope to soon mount a trial in which various forms of
information are sold to users using NetBill.

NetBill architecture

NetBill uses a single protocol that supports charging in a
wide range of service interactions. NetBill provides
transaction support through libraries integrated with

different client-server pairs. These libraries use a single
transaction-oriented protocol for communication between
client and server and NetBill; the normal communications
model between client and server is unchanged. Clients
and servers can continue to communicate using protocols
optimized for the application — for example, video
delivery or database queries — while the financial-related
information is transmitted over protocols optimized for
that purpose. This approach allows NetBill to work with
information delivery mechanisms ranging from the WWW
to FTP and MPEG-2 streams.

The client library — which we call the checkbook — and
the server library — the till — have a well-defined API
allowing easy integration with a range of applications.
(Below we describe how we integrated these libraries
with Mosaic clients and HTTP servers.) The libraries
incorporate all security and payment protocols, relieving
the client/server application developer from having to
worry about these issues. All network communications
between the checkbook and till are encrypted to protect
against adversaries who eavesdrop or inject messages.

The NetBill transaction protocol

Before a customer begins a typical NetBill transaction,
she will usually contact a server to locate information or a
service of interest. For example, the customer may request
a Table of Contents of a journal showing available articles
available, and a list price associated with each article. The
transaction begins when the customer requests a formal
price quote for a product. This price may be different than
the standard list price because, for example, the customer
may be part of a site license group, and thus be entitled to
a marginal price of zero [4]. Alternatively, the customer
may be entitled to some form of volume discount, or
perhaps there is a surcharge during the peak hour.

Requesting the price quote is easy. As we discuss
below, in a WWW browser application we have built, a
customer requests a price quote by simply clicking on a
displayed article reference.

The customer’s client application then indicates to the
checkbook library that it would like a price quote from a
particular merchant for a specified product. The
checkbook library sends an authenticated request for a
quote to the till library which forwards it to the merchant’s
application. (Figure 2, Step 1.)

The merchant then must invoke an algorithm to
determine a price for the authenticated user [5]. He
returns the digitally signed price quote through the till, to
the checkbook (Step 2), and on to the customer’s
application. The customer’s application then must make a
purchase decision. The application can present the price
quote to the customer or it can approve the purchase
without prompting the customer. For example, the
customer may specify that her client software accept any
price quote below some threshold amount; this relieves her
of the burden of assenting to every low-value price quotes
via a dialog box.

Assume the customer’s application accepts the price
quote. The checkbook then sends (Step 3) a digitally
signed purchase request to the merchant’s till. The till
then requests the information goods from the merchant’s
application and sends them to the customer’s checkbook
encrypted in a one-time key (Step 4), and computes a
cryptographic checksum (such as MDS5 [6]) on the
encrypted message. As the checkbook receives the bits, it
writes them to stable storage. When the transfer is
complete, the checkbook computes its own cryptographic
checksum on the encrypted goods and returns to the till a
digitally signed message specifying the product identifier,
the accepted price, the cryptographic checksum, and a
timeout stamp: we refer to this information as the
electronic payment order (EPO) (Step 5). Note that, at
this point, the customer can not decrypt the goods; neither
has the customer been charged.

Upon receipt of the EPO, the till checks its checksum
against the one computed by the checkbook. If they do
not match, then the goods can either be retransmitted, or
the transaction aborted at this point. This step provides
very high assurance that the encrypted goods were
received without error.

If checksums match, the merchant’s application creates a
digitally signed invoice consisting of price quote,
checksum, and the decryption key for the goods. The
application sends both the EPO and the invoice to the
NetBill server (Step 6).

The NetBill server verifies that the product identifiers,
prices and checksums are all in agreement. If the
customer has the necessary funds or credit in her account,
the NetBill server debits the customer’s account and
credits the merchant’s account, logs the transaction, and
saves a copy of the decryption key. The NetBill server
then returns to the merchant a digitally signed message
containing an approval, or an error code indicating why
the transaction failed (Step 7). The merchant’s application
forwards the NetBill server’s reply and (if appropriate) the
decryption key to the checkbook (Step 8).

(1] >

Customer (2l Merchant
[3]
<
[4]
[5]
<
[8]

[NetBill Server]

Figure 2- Transaction Protocol
Protocol Failure Analysis
The above description assumed that no failures occurred
during the execution of the protocol. In reality, the

protocol must gracefully cope with network and host
failures. One of our goals is to tightly link two events:
charging the customer and delivering the goods. The
customer should pay exactly when she receives the
information goods.

The NetBill server is highly reliable and highly
available. All transactions at the NetBill server are
atomic: they either finish completely or not at all. NetBill
is never in doubt about the status of a purchase. We
cannot make similar assumptions about the reliability of
the merchant’s and customer’s software; they must
maintain a state consistent with the NetBill Server.

First, consider the protocol from the perspective of the
customer’s application. Up to step 5, when the customer
application acknowledges receipt of the information
goods, the customer application knows that no transaction
has occurred. That is, the customer does not have access
to the product and the merchant does not have the
customer’s money. Once the application sends the EPO,
the customer is committed to the transaction and must be
prepared to accept the purchase. If the customer’s
application does not receive a response from the
merchant’s application, then it is the responsibility of the
customer’s application to determine what happened: the
customer’s application can poll either the merchant
application or the NetBill server to determine the status of
the purchase request. If the merchant’s application did not
successfully forward the EPO to the NetBill server, then
the EPO will have expired and the NetBill server will
respond to the customer’s application that the purchase has
failed. Of course, the customer still does not have the one
time key, so while the customer still has her money, she
also does not have the goods. If, on the other hand, the
transaction succeeded before communication failed, then
the customer’s application can find the status of the
purchase and, if appropriate, the decryption key from
either the merchant’s application or the NetBill server
(which has registered the key). If both are unreachable,
the customer’s application must continue to poll.

Now consider the protocol from the perspective of the
merchant’s application. Before it forwards the EPO and
invoice to the NetBill server, the merchant’s application
knows that the transaction has not occurred. After it
forwards the EPO and invoice, however, the merchant’s
application is committed to the transaction and must obtain
the result from the NetBill. If the merchant’s application
does not receive a response from the NetBill server, the
merchant’s application must poll the NetBill server.

The protocol is much simpler for the NetBill server than
for the other parties. The NetBill server is never in a state
in which it depends on a response from another entity to
determine the status of a transaction. Until the NetBill
server receives the EPO and invoice from the merchant’s
application, it knows nothing about the purchase. Once it
receives the EPO and invoice it has all the information
necessary to approve or reject the purchase.

We use the term certified delivery to describe the
mechanism of delivering encrypted information goods and

then charging against the customer’s NetBill account, with

decryption key registration both at the merchant’s

application and the NetBill server.
The NetBill transaction protocol also exhibits a number
of other desirable features:

e Support for flexible pricing. By including the steps
of offer and acceptance, we provide an opportunity for
the merchant to calculate a customized quote for an
individual customer. In the process we also generate
signed messages that can later prove that there was a
contract at the quoted price.

e Scalability. The bottleneck in the NetBill model is the
NetBill server which supports many different merchants.
Our transaction protocol minimizes the load on the
NetBill server and distributes the burden over the many
customer and merchant machines. Note that a single
interaction with the NetBill server both verifies the
availability of funds and records the transaction. It is not
possible to have less than one interaction with the NetBill
server [7].

e Protection of user accounts against unscrupulous
merchants. In a conventional credit card transaction, the
merchant learns the customer’s credit card number and
can submit fraudulent invoices in the customer’s name.
In a NetBill transaction, the customer digitally signs the
EPO using a key that is never revealed to the merchant,
thus eliminating this threat. Moreover, the customer has
proof of the exact nature of the information goods
received, providing evidence in case a dishonest
merchant attempts to deliver faulty information goods.

NetBill account management

In this section, we discuss how customers and merchants
can manage their NetBill accounts.

NetBill supports a many-to-many relationship between
customers and accounts. A project account at a
corporation can have many users authorized to charge
against it. Conversely, an individual customer can
maintain multiple personal accounts. Every account has a
single user who is the account owner; and the account
owner can grant various forms of access rights on the
account to other users.

User account administration is provided through WWW
forms. Using a standard WWW browser, an authorized
user can view and change a NetBill account profile,
authorize funds transfer into that account, or view a
current statement of transactions on that account.
Authentication and security are provided by treating
account information as “billable” items. NetBill provides
account information to users using the NetBill protocol.
NetBill can be configured to provide this information for
free or for a service charge, as desired.

Automating account establishment for both customers
and merchants is important for limiting costs. (Account
creation is one of the largest costs associated with
traditional credit card and bank accounts.) To begin the
process, a customer retrieves, perhaps by anonymous FTP,
a digitally signed NetBill security module that will work

with the user’s WWW browser. Once the customer
checks the validity of the security module, she puts the
module in place. She then fills out a WWW form,
including appropriate credit card or bank account
information to fund the account, and submits it for
processing. The security module encrypts this
information to protect it from being observed in transit.
The NetBill server must verify that this credit card or
banking account number is valid and that the user has the
right to access it. There are a variety of techniques for this
verification: for example, customers may telephone an
automated attendant system and provide a PIN associated
with the credit card or bank account to obtain a password.

NetBill costs and
institutions

In a modern market economy, there are many forms of
money, but two distinct poles typify the range of
alternatives: fokens and notational money. Currency
consists of unforgeable tokens that are widely accepted by
both buyers and sellers as a store of value. In a cash
transaction, the seller delivers goods to the customer while
the customer delivers currency to the seller. Other
projects are developing forms of electronic currency for
network commerce based on unique digital bit strings.[8]

Demand deposit accounts at a bank are an example of
notational money: on instruction (a check) by a customer,
funds move from one ledger to another. A complex
system involving intermediaries such as the Federal
Reserve supports check clearing and settlements when the
accounts are held at different banking institutions.
Settlements can involve significant delays during which
funds are not available to either party in a transaction.
Notational accounts can have either a positive or negative
balance, depending upon whether a bank is willing to
extend credit to a buyer. For example, a credit card
account runs a negative balance as the issuing bank
executes instructions to transfer funds to a merchant's bank
account.

Orders to transfer notational money are increasingly sent
using electronic mechanisms: FedWire, automated
clearinghouses (ACH), credit card authorization and
settlement networks, and automated teller machine
networks are all examples. NetBill also uses notational
money. Because both customers and merchants maintain
NetBill accounts, inter-institutional clearing costs are not
incurred for every transaction. NetBill accounts provide a
low cost mechanism to aggregate small value transactions
before invoking a relatively high fixed cost conventional
transaction mechanism. Customers move money into their
NetBill account in large chunks (for example, $50 - $100)
by charging a credit card or through an ACH transaction.
Similarly, money moves from a merchant's NetBill
account to the merchant's bank through an ACH deposit
transaction.

NetBill accounts can be either pre-paid (debit model) or
post-paid (credit model). In the prepaid model, funds
would be transferred to NetBill in advance to cover future

interaction with financial

purchases. If the user does not have sufficient funds to
cover a particular transaction, that transaction would be
declined. The amount of any prepayment is set by the
customer, subject to minimums and maximums established
by the NetBill operator. On pre-paid accounts, the system
allows users to designate the balance at which she is
prompted to transfer additional funds to Netbill. Because
ACH transactions take several days to clear, a user
prepaying her Netbill account through the ACH may not
have immediate access to the funds. Funding through a
credit card, while incurring larger transaction fees, allows
immediate access to a prepayment.

In the credit model, transactions would be accumulated
with payment to NetBill being triggered by either time
(based on a pre-established billing period) or dollar
amount (based on a pre-established limit). Because
granting credit creates a risk of non-payment, higher
transaction fees may be associated with credit, versus
prepaid accounts.

The design space for electronic transaction systems has
three crucial dimensions: risk, delay and cost. For imme—
diate transactions, risks of fraud or non-payment can be
dealt with in two ways: 1) incorporating an insurance fee
proportional to the transaction amount, or 2) investing in
sophisticated security systems with (high) fixed costs
independent of transaction size. Credit card systems are of
the first type, typically charging 1-3% of the value of the
transaction, while FedWire takes the second approach.
Delay can reduce risk by allowing verification of fund
availability before committing a transaction, and by
allowing batching to achieve economies of scale,
particularly in interbank settlements. However, delay
imposes opportunity costs when funds are not available
until cleared.

NetBill is optimized for very low marginal transaction
costs (on the order of 1¢) on small value transactions (on
the order of 10¢.) Fixed networking costs are reduced by
using the Internet with its substantial economies of scale,
as opposed to a dedicated single function network.
Because both customers and merchants maintain accounts
at NetBill, most transfers are internal to NetBill; this
reduces both risk and processing cost. When fund
transfers outside NetBill are necessary, they can take
advantage of aggregation, which spreads fixed transaction
costs over larger sums. Use of ACH transfers and prepaid
accounts minimizes risk at the cost of some delay before
incoming funds are available; where NetBill offers
deposits through credit cards, or grants credit itself, the
risk increases and must be passed on to customers as
higher fees.

NetBill keeps other costs of operation low by:
automating all account administration functions; using
techniques like certified delivery to reduce the incidence
of complaints and customer service costs; and using a
modern distributed processing approach for the core
NetBill processing system.

An example of NetBill with Mosaic

Because WWW browsers and servers are a de facto
standard for distributing information over the Internet, we
have created a prototype implementation of NetBill that
allows for billing of WWW transactions. Rather than link
the NetBill libraries with a WWW browser and http server
respectively, we have enabled commerce with no
modification to either the browser or the server. Our
design introduces two entities in order to support the
exchange of money for goods: the Money Tool and the
Product Server. The Money Tool runs on the customer’s
machine and works with a Mosaic browser. It allows the
customer to authenticate, select accounts, approve/deny
transactions, and monitor expenditures. The Product
Server, which incorporates the till libraries, works with the
http server to sell information products.

When a user clicks on a product in a product server’s
catalog, the server returns a special file with a mime type
containing information about the server’s identity, the
product to be ordered, and the port number of the product
server. This mime type spawns a “helper” program in the
same way that jpeg, sound, and mpeg files currently do.
The spawned program communicates the contents of the
file between Mosaic and the Money Tool.

The Money Tool acts as the customer’s application in
the NetBill transaction protocol described above. After it
receives and decrypts the goods, it uses the remote control
function of Mosaic to cause the browser to display the
received information. Besides implementing the steps in
the protocol, the Money Tool provides a number of useful

functions to helE the user manage transactions gFigure 3):

o wmomeytoa |
I File Registry Help
Session begun on: Mon Dec 19 12:35:21 1994
Amount spent this session: I $0.20
Balance: I $4903.42

(For account #67892 as of Mon Dec 19 12:38:13 1994)
Current Account:

| Market Research (#67892) =

Registry of Remitted Checks

Mon Dec 19 12:37:41 1994 CheckNo #3
Account: #7892, Amount: $0.20, Product ID: #5/0
Made to: rm75S@NETBILL.INI.CMU.EDU Memo: "elec. comm’

[Bl
Total checks: 1
Total amount of checks: I $0.20

Figure 3: The Money Tool
« it provides an authentication dialog window

* it provides a running total of expenditures in the current
session and the current balance in the user’s NetBill
account

« it provides a listing of all EPOs processed in the current
session

* it can be configured to automatically approve
expenditures below a threshold

* it can be used to retrieve the product encryption key
from NetBill in the event of failure of a merchant host.

Spyglass has recently proposed a standard API for
Security Plug-in Modules for WWW browsers [9]. In the
future we expect to integrate the Money Tool with the
browser using this mechanism.

In the current implementation, the initial request for
goods to the http server causes the server to run a script
that writes information about the request to a temporary
file at the server. When the Product Server receives a
request for a price quote from the Money Tool, it must
access the server’s database to determine the price quote
based on the customer identity. If the quotation is
approved, the product server finds the goods using the
information saved by the http server and completes the
NetBill transaction protocol,

Additional issues

As described above, NetBill is well suited for supporting
commerce in information goods. However, the NetBill
model can also be extended in a variety of ways to support
other types of purchases. For example, NetBill could be
used equally well for conventional bill paying. A
customer could view a bill presented as a Web page;
instead of buying information goods, we can think of the
customer as buying a receipt for having paid the bill.

If the product to be bought is a one hour movie, it is
likely that the customer will want to stream the data
directly to a viewer, which conflicts with NetBill’s model
of certified delivery. We are exploring alternative
approaches such as using the standard NetBill protocol to
periodically buy a key for the next N minutes of an
encrypted video stream.

We are also exploring the software rental application. A
software vendor could incorporate the checkbook library
in any arbitrary application software. Periodically, the
software would ask the user to approve the purchase of a
key for the next month’s operation. (This requires

mechanisms to prevent the software vendor from including
a Trojan Horse designed to capture a renter’s password.)
Acknowledgments

Much of the development of NetBill has been done by
students in project courses taken as part of Carnegie
Mellon’s graduate program in Information Networking.
We thank all of those students for their help and ideas.
Support for our research was provided in part by a grant
from the National Science Foundation.

Notes

For more information on NetBill, including a fuller
version of this paper, please look at our WWW page at
http://www.ini.cmu.edu:80/netbill.

1. Porat, M., The Information Economy (US. Office of
Telecommunications, 1977)

2. New York Times, June 7, 1992

3. Separately, we are researching means of embedding a
unique watermark in each copy sold which would
allow illegal copies to be traced to the source.

4. In the special case of free information, we can
optimize our protocol still further.

5. In separate work, we are designing pricing servers
that can handle a very broad range of pricing
strategies.

6. Rivest, The MD5 Message Digest Algorithm, April
1992.

7. In theory, one might bundle several transactions
together and have them all processed as part of one
interaction with NetBill. However usage data
collected from Carnegie Mellon's Library Information
System indicates that in the majority of cases, users
contacting the library are looking for a single item,
suggesting that bundling would not be appropriate.
Cf. O'Toole, K., The Internet Billing Server:
Transaction Protocol Alternatives, Carnegie Mellon
Information Networking Institute Technical Report
TR 1994-1.

8. Chaum, D., “Achieving electronic privacy”,
Scientific American, 267, No. 2, pp. 76-81, 1992

9. Jeff Hostetler, “A Framework for Security,” 2nd
WWW Conference, Chicago, Illinois, October, 1994.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

