In Proceedings of the 28th Annual Allerton Conference on Communication, Control, and Computing, October 1990, pp. 62-71

Optimal Sampling Strategies for Quicksort

C. C. McGeoch* 1. D. Tygar ¢
DIMACS Center School of Computer Science
Rutgers Untversity Carnegie-Mellon University
Abstract

A well-known variant of Quicksort samples from the subarray at each recursive
stage and uses the sample median as the partition element. Three families of gen-
eral sampling strategies, which allow sample size to vary as a function of subarray
size, are considered. The total cost of sorting comparisons plus median-selection
comparisons is analyzed. A strategy which takes a sample of size §(,/n) for subar-
1ay size n is shown to be optimal over a large class of strategies. The square-root
strategy has O(n!-®) worst-case cost. The true optimal strategy is found computa-
tionally for n < 10, 000.

1 Introduction

The basic operation of Quicksort partitions an array X = zy,z3, ..., T, around a partition
element p = z; so that elements with value less than p are to its left in the array and
larger elements are to its right; Quicksort then recurs on the two subarrays on either
side of p. A well-known generalization (see [8], [14], or [13]) takes a sample of fixed size
(usually 3) at each recursive stage and uses the sample median as the partition element;
we call this a fized-sample (FS) strategy.

We introduce a class of Quicksort algorithms for which sample size can vary as a
function of subarray size at each recursive stage. A selection strategy S corresponds to a
sampling function o(n) which takes subarray size n and returns a sample size s. At each
recursive stage, the partitioning costis the number of comparisons required to partition a
subarray of size n and the selection cost is the expected number of comparisons required
to find the median s items. Intuition suggests that large sample sizes will decrease

partitioning cost but increase selection cost: we analyze the total cost, of partitioning

*Permanently at: Dept. of Mathematics and Computer Science, Amherst College, Amherst MA
01002.

tSupported by National Science Foundation Presidential Young Investigators Grant CCR-88-508087.
The views and couclusions in this paper are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the National Science Foundation or the
U. S. Government.

&2

plus selection, summed over all recursive stages. This cost model and the generalization
to varying sample sizes are new to the analysis of Quicksort.

We present the following results:

o A two-tier (TT) strategy takes a sample of size s = o(n) at the first stage only; at
lower levels of recursion the sample is of fixed size t. We derive an exact formula for
the optimal sampling function ¢(n) for any ¢. For any problem size N the optimal
TT strategy has lower total cost than any FS strategy.

o A square-root (5Q) strategy takes a sample of size §(1/n) at all recursive stages. We
describe a square-root strategy which has lower total cost than any TT strategy.

» Any SQ strategy requires O{n!®) total comparisons in the worst case. This is the
only Quicksort-based algorithm that we know of with subquadratic worst-case cost.

e For given problem size we can compute exactly the optimal strategy; we compare
this strategy to standard fixed-sample strategies for N < 10000.

The original Quicksort algorithm, proposed by Hoare [5, 6] selected the leftmost
subarray element at each recursive stage. Hoare noted that a randomly-selected partition
element would ensure expected-case behavior and suggested that larger samples might
improve performance. Singleton {16] and Sedgewick [14, 13] considered FS strategies and
recommended median-of-8 Quicksort where sample size ¢ equals 3 at all recursive stages.
The analyses were not made precise because selection cost was not an explicit part of the
model; rather it was considered part of the overhead of each recursive call.

Many strategies have been proposed to improve performance of Quicksort when some-
thing is known about the initial input permutation, for example when the elements are
“mostly sorted.” For comparative studies of such variations, see {1], [9] and [10].

We require a median-selection algorithm as a subroutine. Hoare [5] presented a selec-
tion algorithm called FIND which behaves similarly to Quicksort. Let H,, denotes the
m** harmonic number. Knuth ([8] Exercise 5.2.2-32) showed that the expected number
of comparisons to select the median of s elements (with 3 = 2m — 1) by this algorithm is

FIND(m) = 4m(Ham_ — Ho) + 4m — 4H,,, + i::-.

The last term disappears when m = 1. Asymptotically this function has value near 3.39s.

Floyd and Rivest (2, 3] presented a selection algorithm requiring 3s/2 + O(+/3) com-
parisons to find the median in the expected case. Both FIND and SELECT can require a
quadratic number of comparisons in the worst case: Schonhage, Paterson, and Pippenger
[15] describe an algorithm that finds the median of s elements using 3s+0(s) comparisons

in the worst case.

63

2 Analyses of Selection Strategies

We assume that the keys to be sorted are distinct, and that all initial input permutations
are equally likely; for analysis purposes, this is equivalent to taking a random sample
of the elements at each level. We assume throughout that the sample size is found by
rounding the sampling function value to the nearest odd integer. We follow standard
analyses in assuming that a sample is taken with replacement when ¢ > n and that
partitioning cost at a single stage is equal to n + L.

It will be convenient to distinguish between N, the input problem size, and =, the
size of a subarray somewhere during the recursion. Thus we have n = N only at the first
stage of recursion.

Suppose that ¢(n) returns odd positive integers and let h(n) = (o(n) —1)/2. Let f(s)
denote the expected cost of selecting the median of s items. Then the total expected cost
of Quicksort with sampling strategy o(n) is given by the following recurrence.

Co(n) =n+1+ fo(n)) +2 Zn: Q_l())—ﬂ(‘h)(iﬁ' (Co(r —1)]
o{n)

The summation term gives the probability that the element with rank r is the sample

r=1

median: equivalently, that a sample of size o(n) is chosen so that h(n) items have rank
below r and h(n) items have rank above r.

We would like to derive a closed form for arbitrary o(n) and find the o(n) that
minimizes C,n); clearly this is quite difficult. Instead, we will find optimal functions for

certain classes of strategies. We consider the following classes.

1. In fized-sample (FS) strategies the sample size o(n) equals a constant ¢ for all
n € 1.N. (When n < t a sample of size ¢ is drawn with replacement from the
subarray.) Total costs for these strategies can be derived from Sedgewick’s [13],
[14] analyses.

2. In two-tier (TT} strategies the sample size is determined by a function of the form

_Jv(tn) =N
"'(“)“{t ifn<N

We derive the optimal formula 7" (£, n) for any ¢; it turns out that v*(t,n) = ©(y/n}
for any fixed &.

When v*(¢,n) is applied, the “globally optimal” choice of ¢ for given problem size
N is denoted t*. We show that the globally optimal TT strategy has lower cosi
than any FS strategy.

3. Square-root (SQ) strategies have sampling functions of the form a(n) = O(/n).
We prove that the SQ strategy which applies

o(n) =7"(t",n) for 1<n<N
64

has lower total cost than the globally optimal TT strategy.

We also show that any SQ strategy has sub-quadratic total cost in the worst case.

2.1 Optimal TT Strategies

We first derive the optimal two tier strategy y*(1,n) for £ = 1. Sedgewick’s {14] [13]
analyses imply that, with t = 1, total expected partition cost for a problem of size n 1s
2(n + 1){Hpn4s — 1) Selection cost is clearly zero for a one-element sample. Therefore the
expected cost of a TT strategy witht = 11s

TTy(n) =n+1+ f(2h +1) + (%é (n;") (r . 1)2T(H, —1).

Considering the summation term alone, we have

;E (n;r) (rgl)z,.ﬂr _gl(n;r) (r;l)%,

which is equivalent to
2fn—r T rfn—r7r T
2(h+ 1 r—2(h+1 .
(h ’E(h)(h+1)H (+>,§(h)(h“)
Using identities found for example in [4], we obtain

n+1

2(h + 1)(2h+2

) (Hp41 — Hanpz + Hrpr — 1),
and the complete formula for expected total cost is therefore
TTl(ﬂ-) =n+4+ 1 + f(Zh + 1) + 2(1’1: + 1) (Hﬂ+1 b th.l.g + Hh+1 —_ 1) .

Our goal is to find the value of & (and therefore of 3) that minimizes T71(n). Assume
that a linear-expected-time selection algorithm is used, and replace f(2h + 1) by the
first-term approximation a(2h + 1) for appropriate constant a. Replacing each harmonic
number by the first three terms of the approximation H, =~ lnn + § + 1/2n — O(1/n?)
(where &8 s .577216 is Euler’s constant), we obtain

1 1
~ -~ § :
TTi(n) ~n+1+a(2h+1) +2(n+ 1) (ln(n +1) -2+ + 2+ 1) 4k 1))

This is minimized when

(1)

yPa 1 o s=7(1,n)=+(n+1)fa-1

Because of the approximation we have only found the first term of the optimal sampling

h® =

function. This function must be rounded to the nearest odd integer to obtain a sam-

ple size: therefore the approximation is sufficient to give the true optimal sample size
65

asymptotically, since with 7*(1,n) = 6(,/n) the approximation is accurate to within an
0(1/n) term.

This analysis can be generalized to show that the optimal strategy for any t is a
square-root function of n. Let s = 2h + 1 as before and, similarly, let £t = 2k + 1. We

kave total partitioning cost

_ 4+ 1)Hapn
})-‘-(n) - H2k+2 _ Hk+1 Ll O('ﬂ),

and total expected selection cost equal to ©(nt) (see [14], [13]). Then

TTy(n) =n + 1 +f(2h+1)+2i [('_*)(5) rE, ; @(kr)}

(") Hakpa — Hi

r=l 2h+t

which has closed form

Hoty — Hanga + Hoa
Hakys — Hypy

TT,(n)=n+1+f(2h+1)+(n+1)[+@(k)].

Optimal sample size is given by

n+1l n+1
A" = 1 * =yt t, = 1. 1
\/80 (Ha2k42 — Hipr) or & =7(tn) \/2‘1 (Haksz — Hesa) 1)

The sum Hkyz — Hiy1 18 approximately equal to In2 — 1/(4k + 4) =~ .693 — 1/(2¢ + 2).
For any problem size N there must be some optimal t* that minimizes total compari-

son cost over all TT strategies which use 4*(¢,n). Our computational results suggest that
optimal ¢* is given by a slowly increasing function of N: for now we denote the optimal
sampling function by

- *(t*,n) fn=N
O'N(")={Z.()

fn< N

Thus the optimal strategy is a “global” strategy for problem size N rather than one that
only depends upon subarray size. The total cost of sorting an array of size n by this
strategy is denoted by TTx(n).

2.2 The Square-Root Strategy

We now consider a square-root strategy which applies the sampling function
a(n) = y*(t",n) for 1<n<N.

The 4*(¢t",n) and t* here are as derived above for the optimal T'T strategy.
We can rank the following five strategies.

o Let F3(N) denote the cost of the optimal FS strategy which applies o(n) = i,
where { is optimal for N. Optimal { grows slowly with problem size N (see [14],
[13]).

66

Let FS*(N) denote the expected cost of the FS strategy that applies o(n) = ¢*,
where ¢* is optimal for TT strategies. Note that ¢* does not necessarily equal é.

Let TTy(N) denote the cost of the globally optimal T'T strategy for problem size
N, derived in the previous section.

o Let ﬁN(N) denote the cost of the TT strategy that applies

[y(in) ifn=N
G(n)-{f ifn< N

where f is as defined above.

Let SQ(n) denote the cost of the strategy which applies

o(n) =7"{t",n) for 1<n<N.

With these definitions, we have the following theorem.

Theorem: For a problem of size N, total comparison costs are related by
SQ(N) < TTH(N) < TTn(N) < FS(N) < F§*(N).

Proof: Note that the problem size N is fixed beforehand and determines the globally
optimal ¢* and £ for their respective strategy classes. The theorem claims only that the
relationships hold for the total expected cost of sorting, not necessarily for n < N.

We will demonstrate the inequalities working from right to left and numbering the
arguments for reference.
(1) The fourth inequality is immediate by the definition of £ as optimal for fixed-sample
strategies at problem size N.
(2) The third inequality is immediate by the derivation of v*(¢,n) as optimal for any ¢.
When n < N the two strategies are identical. When n = N, the two-tier strategy choses
a sample 7*(f,n) which is optimal.
{3) The second inequality is immediate from the definition of £* as optimal for all TT
strategies with problem size N.
(4) We shall establish the first inequality by induction on problem size N. Let R be an
arbitrary value smaller than N, and consider the T'Ty strategy that applies

ont) = { 1

The cost of sorting an array of size R by this sirategy is denoted TTR(R). This is different
from the TT}, strategy above because the “top level” for this strategy is at n = R rather

than at n = N. (The t* is the same in both, however).
67

The induction hypothesis is that SQ(R) < TTj(R) for all R < N. Let FS§*(R) be
the cost of applying the FS strategy (with t*) to a problem of size R. By the optimality
of 4*(t*,n) we have

SQ(R) < TTR(R) < FS°(R).

Now, TT%(R) = FS*(R) whenever R < N, since the sampling functions are identical.
Therefore we have SQ(R) < TTy(R) whenever R < N.

Consider now the costs SQ(N) and TTy(N). When n = N, the two strategies are
identical since they both take samples of size y*(t*, N). Letting C(N) denote partition
plus selection cost when n = N, and letting P(N,r) denoting the probability that the

partition element has rank r, the cost functions for the two strategies are

N
SQ(N)=C(N)+2)_ P(N,r)SQ(r)

r=1
and N
TTH(N) = C(N)+2>_ P(N,r)TTy(r).
r=1
Since SQ(r) £ TTx(r) for all »r < N the theorem is proved. As a basis case, note that
~* will return 1, easily shown to be optimal for small n, when n is small. C

Argument (4) implies the that S strategy is better at all recursive stages.

Corollary: SQ(n) < ST{(n) foralll1 <n < N.
Finally, it is easy to demonstrate subquadratic worst-case performance for any square-

root sirategy, even when the median-selection routine has quadratic worst-case cost.

Theorem: The worst-case total cost of any square-root strategy is O(n'*).

Proof: Suppose that a selection algorithm with worst-case cost O(s?) is used. To simplify
notation, assume that the sample drawn is of size at least 2b,/n -+ 1, and at most cy/n
for appropriate constants b and c¢. Worst-case partitioning cost occurs when extremal
values of every subarray are chosen as partition elements. But if a sample of size at least
2b./n+1 is drawn at each level, it is impossible for elements with rank less than or equal
to by/n (or greater than n — b\/n) to become sample medians. Therefore the worst-case
cost for any SQ strategy is bounded by the following recurrence,

8Q(n) < n+ 1+ (ev/n)* + 5Q(bv/n) + SQ(n — by/n),

which has closed form O(n'®). Note that this bound holds even if worst-case selection

cost is qua.dra.tic in the sample size.

68

n 35 93 197 337 515 730 984 1274 1603
8n 3 5 7 9 11 13 15 17 19
n | 2813 3292 3808 4362 4953 5582 6248 6952 7693
Sy, 25 27 29 31 33 35 37 39 41

Figure 1: Optimal Sample Size

3 An Exact Optimal Strategy

Given an exact formula f(s) for selection cost it is possible to compute directly the op-

timal sample size by a dynamic-programming algorithm that finds $ = o(n) to minimize

r—1) {n—r
OPT(n)=n+1+ f(s +2 (()())[OPT — 1)+ OPT(n —r)).
The running time of the computation is just quadratic in the largest n examined, since
it is only necessary to compare the current optimal value of s to s + 2 at each value of
n, rather than considering all possible values.

Hoare’s selection algorithm FIND, although not the most efficient known, does permit
an exact formula for selection cost, given in Section 1. Using this cost for f(s) in the
above computation of OPT{n), the dynamic program produces the optimal sample sizes
shown in Figure 1: for example, 5 is the optimal sample size for 93 < n < 197. The
computations were performed for n up to 10,000. Linear least-squares regression on a
log-log scale suggests that the best power-law fit for this data is proportional to n*%2
(with residuals curving upwards); this is nearly a square-root strategy.

Table 2 compares total expected cost for the optimal strategy to fixed-sample strate-
gies with ¢ = 1 and ¢ = 3. The numbers in parentheses give the ratio to the lower bound
Nlg(N) — N/1g{N) (see {7]) on expected comparisons for sorting.

The fixed-sample costs Cj(n) and C3(n) correspond to standard implementations
found in [14] [13} and [8] (Section 5.2.2 and Exercises). These implementations are
highly tuned to minimize running time in the MIX instruction set. The optimal strategy
uses an inefficient general-purpose selection algorithm (Hoare’s) and does not adopt some
further improvements mentioned below. Nevertheless, the total comparison cosi is less
than either fixed strategy for N greater than 4000.

4 Remarks

Further limited experiments suggest that comparison cost is quite robust with respect to
small variations in the sampling function; perhaps a hybrid strategy that choses one of
a small set of sample sizes, each corresponding to a highly tuned subroutine, would give

minimum execution time.

69

N] 2000 4000 6000 8000
C.pi(N) | 24664 53502 83870 115254
(114) (1.13) (L.12) (1.12)
Ca(N) | 24420 53581 84535 116654
(1L12) (1.13) (1.13) (1.13)
Ci(N) [27395 60321 95339 131716
(1.26) (1.27) (1.27) (1.28)

Figure 2: Total comparison costs for three strategies.

. Since all median-selection algorithms manage to partition a sample around the me.
dian, a significant reduction in comparisons could be realized by avoiding re-examining
the sample during the partitioning stage. The partitioning cost at each stage would be
reduced from n — 1 to n — s. If the sample region is contiguous within the subarray,
sentinels can be used to eliminate boundary checks.

Finally we note that a strategy that minimizes total comparisons does not necessarily
minimize total running time: the number of ezchanges of items also contributes to the
leading term of running time. Experimental comparisons of fixed-sample strategies and

the optimal strategy for other cost measures are described in [11) and [12].

Acknowledgements

We thank Jon Bentley who first suggested the idea of allowing sample sizes to vary as a
function of array size, and Mike Langston who suggested the hybrid scheme.

References

[1] C. R. Cook and D. J. Kim. Best sorting algorithm for nearly sorted lists. Commu-
nications of the ACM, 23(11):620-624, November 1980.

[2] R. W. Floyd and R. L. Rivest. The algorithm select—for finding the ith smallest of
n elements. Communications of the ACM, 18(3):173, March 1975.

[3] R. W. Floyd and R. L. Rivest. Expected time bounds for selection. Communications
of the ACM, 18(3):165-172, March 1975.

(4] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-
Welsey Publishing Company, Reading, MA, 1989.

[5] C. A. R. Hoare. Partition (algorithm 63), quicksort (algorithm 64), and find (algo-
rithm 65). Communications of the ACM, 4(7):321-322, July 1961.

(6] C. A. R. Hoare. Quicksort. Computer Journal, 5(4):10-15, April 1962.
70

[7] D. E. Knuth. The Art of Computer Programming: Volume 2, Seminumerical Algo-
rithms. Addison-Wesley Publishing Company, Reading, MA, 1973.

(8] D. E. Knuth. The Art of Computer Programming: Volume 8, Sorting and Searching.
Addison-Wesley Publishing Company, Reading, MA, 1973.

[9) R. Loeser. Some performance tests of “quicksort” and “descendents.”. Communice-
tions of the ACM, 17(3):143-152, March 1974,

(10] R. Loeser. Survey on algorithms 347, 426, and quicksort. ACM Transactions on
Mathematical Software, 2(3):290-299, September 1976.

[11] C. C. McGeoch. Ezperimental Analysis of Algorithms. Ph.D. Dissertation, CMU-
CS-87-124, Carnegie Mellon University, 1986.

[12] C. C. McGeoch. An experimental study of median-selection in quicksort. Proceed-
ings, 24th Allerton Conference on Communication, Control, and Computing, Univ.
of lllinois, 19-28, October 1986.

[13] R. Sedgewick. Analysis of quicksort programs. Acta Informatica, 7(4):327-355, 1977.
[14] R. Sedgewick. Quicksort. PhD thesis, Stanford University, 1975.

[15) A. Shonhage, M. Paterson, and N. Pippenger. Finding the median. Journal of
Computer and System Sciences, 13:184-199, 1976.

[16] R. C. Singleton. An efficient algorithm for sorting with minimal storage (algorithm
347). Communications of the ACM, 12(3):185-186, March 1969.

71

