In Random Structures and Algorithms, 7:4, 1995, pp. 287-300

Optimal Sampling Strategies for
Quicksort

C. C. McGeoch
Department of Mathematics and Computer Science, Amherst College, Amherst,
MA 01002

). D. Tygar*
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

ABSTRACT

A well-known improvement on the basic Quicksort algorithm is to sample from the
subarray at each recursive stage and to use the sample median as the partition element.
General sampling strategies, which allow sample size to vary as a function of subarray size,
are analyzed here in terms of the total cost of comparisons required for sorting plus those
required for median selection. Both this generalization and this cost measure are new to
the analysis of Quicksort. A square-root strategy, which takes a sample of size ®(vn) for a
subarray of size n, is shown to be optimal over a large class of strategies. The square-root
strategy has O(n'°) worst-case cost. The exact optimal strategy for a standard implementa-
tion of Quicksort is found computationally for n below 3000. © 1995 John Wiley & Sons, Inc.

1. INTRODUCTION

Quicksort is among the most thoroughly analyzed of comparison-based sorting
methods. The basic operation of the algorithm partitions an array X =x,,
X5, ...,X, around a partition element p = x; so that elements with value less than

* Supported in part by ARPA Contracts F33615-90-C-1465 and F22615-93-1-1330, NSF Presidential
Young Investigators Award CCR-88-508087, matching funds from Motorola and TWR, a contract
from the US Postal Service, and by an equipment grant from IBM.

Random Structures and Algorithms, Vol. 7, No. 4 (1995)
© 1995 John Wiley & Sons, Inc. CCC 1042-9832/95/040287-14

287

288 MCGEOCH AND TYGAR

p are to its left in the array and larger elements are to its right. Quicksort then
recurs on the two subarrays on either side of p. A strategy ensuring average-case
behavior is to choose p at random at each stage. A well-known generalization (see
(8], [13], or [14]) takes a random sample of fixed size ¢ at each recursive stage and
uses the sample median as the partition element. We will call such a strategy a
fixed-sample (FS) strategy.

We introduce a class of Quicksort algorithms for which the sample size can
vary as a function of subarray size at each recursive stage. A selection strategy S
corresponds to a sampling function o(n), which takes subarray size n and returns
a simple size s. At each recursive stage, the partitioning cost is the number of
comparisons required to partition a subarray of size n (always a fixed function of
n), and the selection cost is the expected number of comparisons required to find
the median of a sample of size s. Intuition suggests that large sample sizes will
decrease partitioning cost but increase selection cost: we analyze the fotal cost, of
partitioning plus selection, summed over all recursive stages. This cost model and
the generalization to varying sample sizes are new to the analysis of Quicksort.
Although this model only counts comparisons, the analytical methods developed
here can be extended to cover other operations such as data swaps.

Total costs for fixed-sample strategies can be derived from standard analyses in
the literature. We present the following results.

® We consider two-tier (TT) strategies which take varying sample sizes at the
first stage only; at lower levels of recursion the sample is of fixed size .

For this class we derive an exact formula for the optimal sampling function
when ¢ = 1. We then generalize the formula to obtain the leading term of the
optimal sampling function for arbitrary ¢. These sampling functions are of
the form @(Vvn). For any problem size N, the optimal two-tier strategy has
lower total cost than any fixed-sample strategy.

® We also consider square-root (SQ) strategies which use a sampling function
of the form ®(V/n) at all recursive stages. We describe a square-root strategy
that has lower total cost than any TT strategy.

® We show that any square-root strategy requires O(n' ") total comparisons in
the worst case (including selection cost). There appears to be no other
Quicksort-based algorithm in the literature that requires fewer than O(n”)
worst-case comparisons, although it is known in the folklore that a median
selection algorithm with an O(n) worst-case time bound will give an
O(n log n) worst-case bound for Quicksort. Our bound holds even if the
selection algorithm itself has quadratic worst-case cost.

® For a given implementation we can compute exactly the optimal strategy
using dynamic programming; we give optimal sample sizes for small n along
with comparisons to costs of standard fixed-sample strategies. The number
of comparisons required for a strategy using optimal sample sizes is about
88% of the number required for a tuned median-of-3 strategy. The optimal
sample sizes obtained here grow roughly as Vn.

Although two-tier strategies are introduced here primarily to simplify the
analysis of the square-root strategy, they may provide an easy-to-implement

OPTIMAL SAMPLING STRATEGIES FOR QUICKSORT 289

improvement over existing fixed-sample Quicksort programs. It is not clear
whether the square-root strategy would give speedup in practice. These and other
implementation issues are discussed further in Section 4.

The remainder of this section gives a brief review of selection strategies for
Quicksort and of median-selection algorithms.

The original Quicksort algorithm, proposed by Hoare [6,7] selected the
leftmost subarray element at each recursive stage. Hoare noted that a randomly
selected partition element would ensure expected-case behavior and suggested
that larger samples might improve performance.

Sedgewick’s [13, 14] implementations of Quicksort in the MIX language have
provided the standard analytical model for exact analyses of Quicksort. Under
this model, all keys are distinct, and the array elements are randomly ordered.
The model also assumes that when subarray size n is less than sample size ¢, the
sample is drawn with replacement. Sample size is always an odd positive integer.

Singleton [16] and Sedgewick [13, 14] analyzed fixed-sample strategies and
recommended median-of-3 Quicksort, where =3 at all recursive stages.
Sedgewick showed that the percentage improvement in partitioning cost is small
for t>3, and he argued that selection cost for larger samples would quickly
overtake any improvement in partitioning cost. In fact, the optimal sample size ¢
is determined by some slowly increasing function of problem size N, but ¢ =3 has
long been considered the best choice for typical problem sizes. Sedgewick’s
analysis was not made precise because selection cost was not an explicit part of
the model; rather it was considered part of the overhead of each recursive call.

Sedgewick also analyzed a MIX implementation of Samplesort, which was
proposed by Frazer and McKeller [4]. This strategy takes a single large sample
from the array and sorts the sample once. The sample median is used as the
partition element at the top level of recursion, the two sample quartiles at the
next level, and so forth. Total partitioning cost is minimized when the sample size
is @(n/logn). Sedgewick showed that recursively sorting the sample by Sam-
plesort gives optimal expected partitioning cost. However, because of high
overhead, this approach is unlikely to be efficient in practice.

Many strategies have been proposed to improve performance of Quicksort
when something is known about the initial input permutation, for example, when
the elements are “mostly sorted.” For comparative studies of such variations, see
[1], [9], and [10].

Our generalization of Quicksort requires a median-selection algorithm as a
subroutine. Hoare [6] presented a selection algorithm called FIND with behavior
very similar to Quicksort. The sample is partitioned around a randomly chosen
partition element and the algorithm recurs on the subsample that must contain the
median. Let s be the sample size, and let the half-sample size be denoted by
h = (s —1)/2. The median element therefore has rank & + 1. To simplify some
derivations in the following sections, we express the selection cost as a function of
A +1. Knuth ([8], Exercise 5.2.2-32) showed that the expected number of
comparisons required for FIND to select the median of s elements is

FINDh+1)=4h+ 1) Hy,., —H,,)t4h+1)—4H, , +4/3.
The last term disappears when & =0; H; denotes the ith harmonic number. The

function FIND(h + 1) is very well approximated by 6.772(h + 1) —4In(h + 1) —
2.3086.

290 MCGEOCH AND TYGAR

Floyd and Rivest [2, 3] presented a selection algorithm, called SELECT, which
requires 3s/2+ O(V5s) [or equivalently 3k + O(VA)] comparisons to find the
median in the expected case. Both FIND and SELECT can require a quadratic
number of comparisons in the worst case. Schonhage, Paterson, and Pippenger
[15] describe an algorithm that finds the median of s elements using 3s + o(s) =
6h + 3 + o(h) comparisons in the worst case.

2. ANALYSES OF SELECTION STRATEGIES

This section presents derivations of optimal selection strategies for each class.
Following standard analyses, we assume that the keys to be sorted are distinct and
that all initial input permutations are equally likely; for analysis purposes, this is
equivalent to taking a random sample of the elements at each level. We first give
the general formula for total expected cost for a strategy with sampling function
o(n). We assume throughout that the sample size is found by rounding the
sampling function value to the nearest odd integer. It will be convenient to
distinguish between N, the input problem size, and n, the size of a subarray
somewhere during the recursion. Thus we have n = N only at the first stage of
recursion.

Under standard models, partitioning cost at a single stage is equal to n+1
(see, for example, [8], [13], or [14]). Note that it is possible, using sentinels, to
implement a partitioning routine that requires only n — 1 comparisons per stage.
We use n+1 for direct compatibility with previous results, but it is straight-
forward to substitute n — 1 in the following derivations. Function f(k + 1) denotes
the expected cost of selecting the median of s elements, where s =24 + 1.

The rank r of the partition element after partitioning determinés the size of the
two subarrays on either side of the partition and therefore the cost of recurring.
Note that r refers to the relative rank of p among the n elements of the subarray
rather than its absolute rank in the complete array. Since the partition element is
the median of the random sample, the probability that p has rank r is the
probability that the random sample of size s is chosen such that A of the elements
have rank less than r, and % have greater rank.

The total expected cost S(n) for sampling function o(n) is given by the
following recursive formula:

> LD
Smy=n+1+fth+1)+ EW[S(n—r)JrS(r—n]
r=1 2h+1

=n+1+f(h+1)+T21)§:: (n;r)(r;1>S(r—1).

All that is required is to find a closed form for this formula and to determine the
function o(r) that minimizes S(r). Of course, deriving a closed form for arbitrary
o(n) is quite difficult. Instead, we will find optimal functions for simpler classes of
strategies.

In fixed-sample (FS) strategies, o(n) equals a constant ¢ for all n €[1... N].
Although Sedgewick did not explicitly analyze selection costs, total costs for FS

OPTIMAL SAMPLING STRATEGIES FOR QUICKSORT 291

strategies can be easily derived from his results [13, 14]. The following results are
presented in the remainder of this section.

e Two-tier (TT) strategies have sampling functions which depend on both n
and some (fixed)::

_fv(@t,n) ifn=N,
"f(”)_{r ifn<N.

In Section 2.1 we derive an exact formula for optimal sampling function
y*(1, n). We then derive the leading term of the optimal sampling function
y*(t, n) for general ¢. It turns out that y*(¢, n) = ©(Vn).

Note that y*(¢, n) is only optimal for a given t. The globally optimal TT
strategy would apply y*(t*,n) with the optimal choice of ¢*, where the
optimal t* depends upon the problem size N. In Section 2.2 we prove that,
for any N, the globally optimal TT strategy has lower total cost than any FS
strategy.

® Square-root (SQ) strategies have sampling functions of the form o(n) =
®(Vvn). In Section 2.2 we prove that the SQ strategy based on

a(n)y=vy*(t*, n) forl=n=N

has lower total cost than the globally optimal TT strategy.
® Finally we show that any SQ strategy has sub-quadratic total cost in the
worst case.

2.1. Optimal Two-Tier Strategies

A two-tier strategy takes a sample of size s = y(t, n) at the top level of recursion
only. At all lower stages of recursion the partition element is chosen from some
fixed sample size t. We first derive the optimal strategy y*(1, n).

Sedgewick [13, 14] showed that the expected total partition cost of Quicksort
when t=11s 2(n + 1)(H,., — 1). A one-element sample clearly has selection cost
of zero. Therefore, the expected cost of a TT strategy with t=1is

n

TT,(n)=n+1+fh +1) + —— (n;r)(rzl)Zr(H,—l).

(2hn+ 1) r=1

Considering the summation term alone, we have
S /n—r r—l) N /N —T (r—l)
;(h)(h ZrHr-El(p U0)2
which is equivalent to

2(””)2 (ni:r)(h:1)Hr_2(h+1),§::1(n;r>(h:1)'

To find a closed form, we can use the following identities (see Graham, Knuth,
and Patashnik [5], identities 5.26 and 7.63):

. MCGEOCH AND TYGAR
21 (n ’; r) (h :— 1) - (;h-:_lz)

2 (G) 5= () - .

The summation term becomes

(1)

n+1
2(h+1) 2h+2 (Hn+1_H2h+2+Hh+1—1)’

and the complete formula for expected total cost is the surprisingly simple
formula

TT,(n)=n+1+f(h+1)+2n+1)(H,,, — Hyoo + H,, —1).

Our goal is to find the value of & (and therefore of s) that minimizes T7,(n).
Assume that a linear-expected-time selection algorithm is used, and replace
f(h +1) with the approximation a(h + 1) + b In(k + 1) + ¢ for appropriate con-
stants a, b, and c. Replacing each harmonic number by the first three terms of the
approximation H, ~Inn+8 +1/2n— O(1/n*) (where 8=~0.577216 is Euler’s
constant), we obtain

TT(n)=n+1+ah+1)+blnh+1)+c+

1 1
2(n+1)(ln(n+1)——ln2+5+2(n+1)+4(h+1)—1).

The derivative with respect to A is

4 b B n+1
TR+ 2+ 1)

and the approximation to 77T,(n) is minimized when

b+ Vb’ +2a(n+1)

h* 5 1
or
—b+ Vb’ +2a(n +1
s*=y*(1,n)= a(n)_1

a

The accuracy of this formula depends upon the quality of the approximations
to f(h+1) and to H,. Note that for fixed n the function TT,(n) has two
terms involving h: The first is f(k +1) which is ®(h), and the second is
2(n + 1)(—H,,,, + H,,,), which is approximately equal to (n+1)/(2h+2)+c
for a constant c. The sum of these two parts, one growing linearly in £ and one
decreasing as n/h, determine the optimal value A*. Since this curve increases
more sharply around its minimal value as n grows, and since the error terms in
the approximations go to zero as n grows, we can argue that the formula for A*
must be correct when n is “large enough.”

The correctness of the sampling function at small n depends upon the accuracy
of the approximation to f(k + 1), which in turn depends upon the choice of

OPTIMAL SAMPLING STRATEGIES FOR QUICKSORT 293

selection algorithm and its analysis. Assuming that algorithm FIND is used, we
can plug in the constants @ =6.772, b= —4, and ¢ = —2.30886, and check h*
against a straightforward computation of TT,(r). In this case the derived formula
works perfectly for small n as well as for large n. Note that only the constant a
contributes to the coefficient of the root-n term of s*. With @ = 6.772 for FIND,
the coefficient is 0.5437, and with a =3 for SELECT the coefficient is 0.8164.

The above analysis can be generalized to show that the optimal strategy for any
t is a square-root function of n. Let s=2h+1 as before and let =2k +1.
Sedgewick [13] showed that partitioning cost for fixed ¢ is

where a(n) is a complicated O(n) function. Total expected selection cost is
proportional to selection cost f(k + 1) at each stage, times the number of stages
B(n, t). An exact formula for B(n,), which must decrease in ¢t and must be O(n)
for fixed f, is not known for general r. Sedgewick shows that B(n,1) =n and
B(n,3) =6(n+ 1)/7 — 1. Total cost for an arbitrary TT strategy is given by

TT(n)=n+1+fh+1)+

S CECT——)

r=1

We must deal with the unknown functions «(r) and B(r, t)f(k + 1). Both are O(r);
we shall see below that the approximations a(r)=cr +c, and B(r, k)f(k +1) =
d,r + d, are sufficient to produce the leading term for the optimal sample size. We
have

TT(n)=n+ 1+ f(h+ 1)+

[Caesn (-t)]
2 + +c,+d,r+d .
2 [(Zh +1) H2k+2 - Hk+1 GrTe i’ 2

r=1

The summation can be broken into three parts, and closed forms found for
each using the identities as before. First,

2 (r— 1) n—r
H,
a2 ()
2(’1 + 1)(2"h++2)(Hn+1 B H2h+2 + Hh+1)
(2h"+1)(H2k+2 _Hk+1)

_ (n+1)H,,, —Hy,» + H,.,)
H2k+2—Hk+1 ’

Second,

2(c1+d)2(1)()r_(c1+d) +1).

(2h+l) r=1

Third,

294 MCGEOCH AND TYGAR

2, +dy S LIED o gy

r=1 2h + 1)
Gathering terms, we have

TT(n)y=n+1)(1+c, +d,)+2c, +dy)+f(h+1)+

~H +H,
n+1 n+1 2h+2 h+1] ‘
()[H2k+2_Hk+1

Making substitutions as before for the harmonics and for f(h+1), and
differentiating with respect to s, we find that the approximation to TT(n) is
minimized when

~b+ Vb’ +a(Hyy .y~ He)n +1)
2a(H,, ., — Hy o)

h*__

or

_ —b+ \/bz +a(Hy ., — Hy .,y)(n+ 1) _
a(Hy o —Hy 1)

As before, the constants a, b, and ¢ depend upon the choice of selection
algorithm. The sum H,, ., — H,,, is approximately equal to In2 —1/(4k +4) or
0.693 —1/(2t +2).

We have derived the leading term for the optimal sampling function for T7,(n),
for given . Note that once the closed forms are obtained, the approximations to
a(n) and to B(n, t)f(k + 1) contribute only to a term that is constant with respect
to h; therefore, they do not affect the leading term of the optimal sampling
function. Tighter approximations to these functions contain extra terms that are
o(h), and those terms can only contribute a quantity that goes to zero as h
increases. Similarly, the error terms in the approximations to f(m) and the
harmonics vanish asymptotically as & grows and cannot affect the leading term.
As before, we can argue that this formula is correct for large n, and its accuracy
can be checked for small n once a selection algorithm is chosen.

Let y*(¢t,n) denote the true optimal sampling function for TT,(n). For any
problem size N there must be some optimal #* that minimizes total comparison
cost over all TT strategies that use y*(¢,n). Thus the optimal strategy is a
‘“global” strategy for problem size N rather than one that only depends upon
subarray size. Our computational results suggest that the optimal #* is determined
by some slowly increasing function of N: For now we denote the optimal sampling

function by
t, n ifn=N,
ot ={77¢"

ifn<N.
The total cost of sorting an array of size n by this strategy is denoted by TT y(n).

2.2, The Square-Root Strategy

The optimal TT strategy finds an optimal sample size at the first stage of
recursion, assuming fixed samples all lower stages. As an improvement to TT
strategies, we consider a square-root strategy, which applies the sampling function

OPTIMAL SAMPLING STRATEGIES FOR QUICKSORT 295
on)=y*(t*,n) forl=n=N.

The y*(t*, n) and t* used here are as defined above for the optimal TT strategy.

In this section we will show that this strategy is optimal over a large class of
strategies, and provide a ranking of the following five strategies according to total
expected cost.

® Let FS (N) denote the cost of the optimal fixed-sample strategy for a given
problem size N. This strategy applies the sampling function o(n) = #, where {
is optimal for N. Inspection of Sedgewick’s formulas (modified to include
selection cost) shows that ¢ =1 is optimal for values of N up to 2" and =3
is optimal for N up to at least 2'°. In general, { is governed by a slowly
growing function of N (see [11}).

® Let FS*(N) denote the expected cost of the FS strategy that applies
o(n) =t*, where t* is optimal for TT strategies. Very limited computational
experience suggest that t* grows more slowly than .

® Let TT ,(N) denote the cost of the globally optimal TT strategy, as derived
in the previous section. This strategy applies the sampling function

_[yr@,n) ifn=N,

o) {t* ifn<N.
® Jet T”I"N(N) denote the cost of the TT strategy that applies

_Jy*@,ny ifn=N,

”(”)_{f ifn<N,

where 7 is as defined above.
® Let SQ(n) denote the cost of the square root strategy, which applies

a(n) =y*(*, n) forl=n=N.

Note that the problem size N is fixed beforehand and determines the globally
optimal ¢* and 7 for their respective strategy classes. The theorem below claims
only that the relationships hold for the total expected cost of sorting, not
necessarily for all n <N.

Theorem. For a problem of size N, total comparison costs are related by
SQ(N) = TT5(N) =TT y(N) <FS (N) < FS*(N) .

Proof. We will demonstrate the inequalities working from right to left and
numbering the arguments for reference.

(1) The fourth inequality is immediate since / is optimal for fixed-sample
strategies.

(2) The third inequality is also immediate. When n < N, the two strategies are
identical and their costs are identical; when n = N, the two-tier strategy
chooses a sample size y*(7, n), which is optimal.

296 MCGEOCH AND TYGAR

(3) The second inequality is immediate from the definition of +* as optimal for
all two-tier strategies.

(4) The first inequality, that SQ(N) < TT x(N), remains. We shall establish this
inequality by induction on problem size N. Let R be an arbitrary value
smaller than N, and consider the TT strategy that applies the sampling
function

_Jy*(@*,n) ifn=R,
or(n) = {t* ifn<R.

The cost of sorting an array of size R by this strategy is denoted TT z(R).
This is different from the 7T, strategy above because the “top level” is at
n = R rather than at n = N. (The ¢* is the same in both, however).

The induction hypothesis is that SQ(R) =< TT (R) for all R<N. We
shall show that this implies SQ(N) < TT x(N).

Now, FS*(R) is the cost of applying the fixed-sample strategy with t* to
a problem of size R. By the optimality of y*(¢*, n) we have

SQ(R) = TT5(R) = FS*(R) .

Furthermore, TT y(R) is equal to FS*(R) whenever R<N, since the
sampling functions are identically ¢*. Therefore, we have

SQ(R)=TT (R) whenever R<N.

Consider now the costs SQ(N) and TT 5(N). When n =N, the two
strategies are identical since they both take samples of size y*(t*, N). Let
C(N) denote partition plus selection cost when n =N, and let P(V,r)
denote the probability that the partition element has rank r. The recursive
formulas for the two strategies are

SO(N) = C(N) +2 % P(N, 1)SO(r)
and
TT5(N) = C(N) +2 Z P(N, ATTE(r) .

Since r can replace R in the above inequality, we have SQ(r) < TT (r) for
all r <N, which immediately implies that SQ(N) = TT y(N).

As a base case for the induction, note that both the square-root strategy
and the optimal two-tier strategy will use sample size 1 when N is small and
will therefore have equivalent costs.)

The above theorem shows that for any N the optimal TT strategy dominates ail
fixed-sample strategies, and that there is an SQ strategy that is at least as good as
the optimal TT strategy. Furthermore, argument (4) implies that the SQ strategy
dominates at all recursive stages.

Corollary, SQ(n)=<ST(n) forall n€[1...N].

OPTIMAL SAMPLING STRATEGIES FOR QUICKSORT 297

Finally, we demonstrate that the worst-case total cost of any square-root
strategy is O(r'). To simplify notation, assume that the sample drawn is of size
at least 2bvn + 1 and at most ¢V for appropriate constants b and c¢. Worst-case
partitioning cost occurs when minimal or maximal elements are chosen as
partition elements at each recursive stage. But if a sample of size at least
2bVn +1 is drawn at each level, it is impossible for elements with rank below
bvn or above n—bvn to become sample medians. The deepest level of
recursion that can be reached by the algorithm is O(vn), and the algorithm does
O(n) work at each level (including partitioning and selection). Therefore, the
total cost is O(n'”). Note that this bound holds even with quadratic worst-case
cost for selection, since the sample is of size O(Vn).

3. AN EXACT OPTIMAL STRATEGY

Given an exact formula for selection cost it is possible to compute directly the
optimal sample size. A dynamic-programming algorithm can find s = o(n) (with
s =2h +1 as before) to minimize costs under the standard analytical model of
Quicksort:

C (m) = > R

W) =n+1+f(h+1)+ 2 == [Colr— 1) + Con — 1)) .

r=1 (2h +1)
The running time of the dynamic program is just quadratic in the largest n
examined: Since the optimal o(n) is sublinear in r, it is only necessary to compare
the current optimal value of s to s +2 at each value of ».

Since all median-selection algorithms manage to partition a sample around the
median, a significant reduction in comparisons can be realized by avoiding
recxamining the sample during the partitioning stage. If the sample is a
contiguous section from the middle of the subarray, sentinels can be used to avoid
checking for the sample ends during partitioning. The partitioning cost at each
stage would be reduced from n — 1 to n — 5. A small modification to the dynamic
program finds the optimal sample sizes and total comparison costs C,(n) for this
tuned algorithm, using the above formula with n — 1 replaced by n —s.

Hoare’s selection algorithm FIND, although not the most efficient known, does
have an exact formula for selection cost. Recall from Section 1 that

FIND(h+1)=4h+1)H,,.,—H,.,)t4h+1)—-4H,, +4/3,

where the last term disappears when A =0.

Using this cost for f(h + 1) in the above computation of Cy(n) and C,(n), the
dynamic program produces the optimal sample sizes shown in Table I. The first
row in each part gives the minimum subarray size n for which the corresponding s
is optimal: For example, for the standard cost model, the best sample size is 3 for
n between 35 and 92. Programs to generate these tables for larger n are available
by request from the first author. Linear least-squares regression on a log-log scale
suggests that the best power-law fit for the pairs from C,(n) is proportional to
n>®, and the best fit for the pairs from C,(n) is proportional to at least n"*">,

Table II presents total expected cost for the optimal strategy under the tuned

model, the optimal strategy under the standard cost model, and for the fixed-

298 MCGEOCH AND TYGAR

TABLE 1, Optimal sample sizes using Hoare’s selection algorithm, under a standard
and a tuned cost model

Optimal Sample Sizes for Standard Model

n 1 35 93 197 337 515 730 984 1274 1603 1968 2372 2813
s 1 3 5 7 9 1 13 15 17 19 21 23 25

Optimal Sample Sizes for Tuned Model

n 1 23 58 129 224 346 495 670 891 1099 1354 1635 1942
s 1 3 5 7 9 i1 13 15 17 19 21 23 25

sample strategies with ¢ =1 and ¢ = 3. The numbers in parentheses give the ratio
to the lower bound N log,(N) — N/In2 on the expected number of comparisons
required for sorting (see [8], Section 5.3.1). Note that these exact costs were
obtained computationally, not by simulation.

In the table the fixed-sample costs C,(n) and C,(n) correspond to highly tuned
implementations found in [13], [14], and [8] (Section 5.2.2 and Exercises). The
median-of-3 implementation, for example, incorporates a sentinel to reduce
partitioning comparisons at each stage; also the selection algorithm optimizes the
number of comparison required for samples of size 3. The tuned optimal strategy
uses a fairly inefficient general-purpose selection algorithm (Hoare’s FIND), but
nevertheless gives a considerable improvement in total comparisons. At these
problems sizes, the number of comparisons required by the tuned optimal strategy
is about 88% of the number required by the median-of-3 strategy. It would be
interesting to learn how much further improvement is gained when the SELECT
algorithm is incorporated in the model, but the dynamic program cannot be used
here because an exact cost analysis for SELECT is not available.

4. CONCLUSIONS
An exact analysis shows that the square-root strategy and the optimal two-tier

strategy require fewer total comparisons than widely known fixed-sample strate-
gies for Quicksort. Computational results show that an optimal strategy using

TABLE II. Total comparison costs for four strategies®

N 2000 4000 6000 8000
C,(N) 21599 47338 74613 102881
(1.13) (1.12) (1.12) (1.12)
C,(N) 24664 53502 83879 115254
(1.29) (1.27) (1.25) (1.25)
C,(N) 24420 53581 84535 116654
(1.28) (1.27) (1.27) (1.27)
C,(N) 27395 60321 95339 131716
(1.44) (1.43) (1.43) (1.43)

*Numbers in parentheses represent ratios to lower bounds on
average comparisons

OPTIMAL SAMPLING STRATEGIES FOR QUICKSORT 299

Hoare’s selection algorithm requires about 88% as many total comparisons as the
standard median-of-3 strategy, and use of better selection algorithm would give
even more improvement.

It remains to be seen whether these strategies can be made efficient in practice.
One problem with the square-root strategy is the added cost of computing the
sample size at each level: A table-lookup scheme which approximates computa-
tion of the square root (or just the optimal sample size) might be faster. Limited
experimental results suggest that comparison cost is quite robust with respect to
small variations in the sampling function; perhaps a hybrid strategy that chooses
one of a small set of sample sizes, each corresponding te a highly tuned
subroutine, would be best. A two-tier strategy, or a generalization that only
computes square roots at the top few levels of recursion, may provide an
easily-implemented improvement to existing Quicksort programs.

Finally, we note that a strategy that minimizes total comparisons does not
necessarily minimize total running time: The number of swaps of subarray items
also contributes to the leading term of running time, and the cost of procedure
calls can dominate at small n. Limited experimental comparisons of other cost
measures for fixed-sample strategies and the optimal strategy are described in [11]
and [12].

ACKNOWLEDGMENTS

We thank Jon Bentley, who first suggested the idea of allowing sample sizes to
vary as a function of array size. Mike Langston suggested the hybrid scheme
which may be most efficient in practice. An anonymous referee made several
useful suggestions.

REFERENCES

{1] C. R. Cook and D. J. Kim, Best sorting algorithm for nearly sorted lists, Commun.
ACM, 23(11), 620-624 (1980).

[2] R. W. Floyd and R. L. Rivest, The algorithm select—for finding the ith smallest of n
elements, Commun. ACM, 18(3), 173 (1975).

[3] R. W. Floyd and R. L. Rivest, Expected time bounds for selection, Commun. ACM,
18(3), 165-172 (1975).

[4] W. D. Frazer and A. C. McKellar, Samplesort: a sampling approach to minimal
storage tree sorting, J. Assoc. Comput. Machinery, 17(3), 496-507 (1970).

{5] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-
Wesley, Reading, MA, 1989.

[6] C. A. R. Hoare, Partition (algorithm 63), Quicksort (algorithm 64), and Find
(algorithm 65), Commun. ACM, 4(7), 321-322 (1961).

[7]1 C. A. R. Hoare, Quicksort, Comput. J. 5(4), 10-15 (1962).

[8] D. E. Knuth, The Art of Computer Programming: Volume 3, Sorting and Searching,
Addison-Wesley, Reading, MA, 1973.

[9] R. Loeser, Some performance tests of “Quicksort” and “descendents,”. Commun.
ACM, 17(3), 143-152 (1974).

300 MCGEOCH AND TYGAR

10] R. Loeser, Survey on algorithms 347, 426, and Quicksort, ACM Trans. Math.
Software, 2(3), 290-299 (1976).

[11] C. C. McGeoch, Experimental analysis of algorithms, Ph.D. dissertation, CMU-CS-
87-124, Carnegie Mellon University, 1986.

[12] C. C. McGeoch, An experimenal study of median-selection in quicksort, Proc. 24th
Allerton Conference on Communication, Control, and Computing, Univ. of Illinois,
October 1986, pp. 19-28.

[13] R. Sedgewick, Quicksort, Ph.D. thesis, Stanford University, 1975.
[14] R. Sedgwick, Analysis of Quicksort Programs, Acta Inf., 7(4), 327-355 (1977).

[15] A. Shonhage, M. Paterson, and N. Pippenger, Finding the median, J. Comput. Syst.
Sci., 13, 184-199 (1976).

[16] R. C. Singleton, An efficient algorithm for sorting with minimal storage (algorithm
347), Commun. ACM, 12(3), 185-186 (1969).

Received October 19, 1993
Accepted October 17, 1994

