
Safe Staging for Computer Security

Alma Whitten
University of California at Berkeley

School of Information Management & Systems
102 South Hall #4600

Berkeley, CA 94720-4600
alma@sims.berkeley.edu

J.D. Tygar
University of California at Berkeley

School of Information Management & Systems
102 South Hall #4600

Berkeley, CA 94720-4600
tygar@sims.berkeley.edu

ABSTRACT
In this paper, we introduce the technique of safe staging for
computer security, which is adapted from conventional user
interface staging to meet the specific needs of computer
security in consumer software. Safe staging can reduce the
initial complexity of security concepts for novice users
while providing continuous protection against dangerous
security errors and supporting exploratory learning.

Keywords
Security, usability, learnability, staging, training wheels.

INTRODUCTION
This paper presents three things:

1. A user interface design technique called safe
staging which is highly appropriate for creating
learnable security software.

2. A high-level discussion of how safe staging might
be applied to applet security.

3. A brief overview of a detailed experiment in
which safe staging was applied to public key
certification in a secure electronic mail
application.

What is staging, and how can it be done safely? Staged
user interfaces shepherd the user through a sequence of
stages of system use to increase user understanding and
protect against errors. In computer security, especially in
software that is intended for general consumer use, learning
how to make effective use of the security mechanisms often
presents an insurmountable threshold to novices [6]. If that
threshold can be safely broken down into a series of
smaller steps, through user interface staging, then the
usability of the security, and the security of the user, will
be greatly improved.
Existing research on varieties of user interface staging,
such as [2] and [4], relies on explicitly exercised control
over the user’s progress, and enforced restrictions on user

actions in the earlier stages. Such coercive control can be
appropriate for training in a business software
environment, and is expected in educational software that
follows a tutorial model, but is unlikely to be appreciated
by general consumers, who want to accomplish their
primary tasks and may already be disposed to view security
as an annoying interference. To develop a technique for
staging security that does not rely on coercive control, we
adapt the model provided by existing standards for
consumer warning labels to create a template for designing
levels of security use that create a natural sequence, support
conscious exploration, and protect the user at all times.
For some security concepts, the significant obstacle to user
understanding is the distance between the human concern
underlying the security goal and its abstract representation
by the security mechanism. Public key certification is an
example of such a concept. We show how our staging
technique can be usefully adapted to guide the user through
successive levels of abstraction, and present experimental
results that strongly support the effectiveness of the staging
technique.

USEFUL TERMS
User interface staging might be designed in a wide variety
of ways. In order to more clearly discuss which of those
ways are useful and appropriate for computer security, we
define the following terms:

hard staging: explicitly enforces requirements for
when the user may progress to the next stage, and
restricts user actions in the earlier stages.
soft staging: gives the user freedom to decide when to
progress to the next stage, and encourages progression
by presenting it as the conceptual path of least
resistance.
function restricted staging: restricts or otherwise
avoids the use of certain functions until the user is
competent to manage the security necessary for
protection.

 data restricted staging: avoids exposure of private
data or other valuable resources to the software until
the user is competent to manage the security necessary
for protection.

In Proceedings of the 2003 Workshop on Human-Computer Interaction and Security Systems, April 2003

We have already mentioned the reasons why hard staging
is unlikely to be appropriate in software intended for
general consumer use. Function restricted staging faces a
similar obstacle in that, as security designers, we are often
attempting to support the adoption of security use by
people who are already accustomed to using those
functions without security. We cannot realistically expect
users to accept security software that asks them to suspend
or even delay their access to instant messaging,
downloadable executables, or electronic mail, yet those are
some of the applications for which we would most like to
design truly usable security. For those reasons, our focus
here will be on techniques for soft, data restricted staging.

MAKING SOFT STAGING SAFE
We assert that the use of a security mechanism can be
safely postponed by a stage if the user interface can be
designed to meet the following requirements as soon as the
stage begins:

1. The user must know which of the available actions
are potentially dangerous.

2. The user must know what bad consequences may
result from the danger.

3. The user must know how to use a temporary
strategy to avoid the danger.

4. The user must know how to begin learning about
the postponed security mechanism once the
limitations imposed by the temporary strategy
become unacceptable.

These requirements correspond closely to the ANSI
standard for consumer product warning labels [1], so it is
reasonable to expect that this amount of information can be
successfully conveyed in a brief and eyecatching manner.
Furthermore, presentation of this amount of information is
unlikely to significantly delay or annoy a user who already
understands the security mechanism.
The temporary strategy for avoiding the danger may be
based on either data restriction or function restriction. The
success of the security user interface as a whole also
requires that the security mechanism, once the user decides
to investigate it, be presented in a usable and learnable
manner, but that is true regardless of whether or not staging
is used.

EXAMPLE: STAGING APPLET SECURITY
When Java applets were first introduced, it was with the
expectation that they would be used in a wide variety of
ways, including, at one extreme, as subscription-based
replacements for application software such as word
processors, desktop publishers, and checkbook managers.
This prospect required web browsers to incorporate applet
security mechanisms that were flexible enough to allow
known, authorized applets to access system resources on
the user’s machine, such as files, directories, and printers,
while blocking randomly encountered applets from doing
anything dangerous or perhaps even from executing at all.

The Java applet security model [3] presents a challenging
usability problem, since it includes the full complexity of
digital signature based trust management and access
control. Furthermore, because of the design goal of
encouraging the adoption of applet technology, a restrictive
default configuration would be problematic, and would in
any case most likely be quickly circumvented by users.
The security user interface design in the HotJava web
browser [5] attempted to solve this dilemma by setting a
default configuration that restricted applets to running in a
“sandbox” without access to system files or peripherals, but
also allowed any digitally signed applet to request
additional access permissions directly from the user. This
design delayed the presentation of trust management and
access control issues to the user until the first time a signed
applet made a request for additional permissions, but it did
not do so safely, since users were thereby set up to have to
make a sophisticated trust decision on the spot, without any
advance opportunity to develop the necessary expertise. It
is a truism in computer security that users in such a
situation will nearly always press the “Okay” button and
hope for the best.
A design approach that uses soft staging with data
restriction, by contrast, leads us to begin with a default
state that allows users to safely postpone understanding of
both digital signature based trust management and of
access control policies, while still permitting applets to
store and access local files within safe limitations. In the
default state, or initial stage, applets would be permitted
access only to a single, dedicated directory, created for that
use alone and containing no pre-existing files. The user
would need to be briefed with the following information, in
accordance with the safety requirements:

1. That permitting an applet access to their data is
dangerous.

2. That an applet might steal, damage, or otherwise
misuse their data.

3. That the danger can be avoided by withholding all
valuable information from the dedicated applet
directory and from direct interaction with applets.

4. That when they wish to consider whether an
applet may be trusted with valuable information,
they can investigate the use of digital signatures
for establishing trust.

Once the user decided to proceed to the next stage, they
would have the option of granting a digitally signed applet
its own dedicated directory, accessible only by applets
signed with the same private key. They would need to be
briefed with the following updated information to maintain
compliance with the safety requirements:

1. That permitting an applet access to data that it did
not itself store is dangerous.

2. That an applet might steal, damage, or otherwise
misuse data it does not own.

3. That they can avoid the danger by continuing to
withhold any data that they do not want a
particular applet to have.

4. That when they wish to allow an applet limited,
specific access to data outside its own directory,
they can investigate the access control policy
mechanism.

In the final stage, the user would be able to define fine
grained access control policies for applets signed with
particular keys, just as they would in the original HotJava
design. In this design, however, they would have followed
a natural, well-supported learning path to arrive at that
stage, and would at all times have had enough information
to proceed and explore safely.

SOFT STAGING FOR THE ABSTRACTION PROBLEM
Computer security is often confusing to novices not only
because of the number of new mechanisms to be
understood, but also because many security mechanisms
are abstract, pared down formal representations of messy,
human social concerns such as trust, identification, and
permission. One way to help users become comfortable
with those abstractions might be to design an initial stage
that combines data restriction with an intuitive, social
temporary strategy for protecting against the danger. This
would allow users to practice thinking about the process for
which the security mechanism is an abstraction, preparing
them to recognize the mechanism itself as sensible and
useful once they decide to investigate it. Such a temporary
strategy will probably provide weak protection at best, but
that is not a safety issue as long as it is combined with data
restriction and accurate presentation of the remaining
danger, in accordance with the safe staging requirements.

EXPERIMENTAL RESULTS
We designed, implemented, and performed usability testing
on a secure electronic mail application that included soft,
data restricted staging to help users understand the highly
abstract mechanism of public key certification. A detailed
discussion of our design and of our testing methodology is
beyond the scope of this extended abstract, but we briefly
cover the main points and summarize the results here. A
full description of these experiments will appear in a
forthcoming publication.

Staging design for public key certification
We staged public key certification using our method of soft
staging for the abstraction problem. Key certification is a
particularly difficult concept to convey to users, because it
takes the already complicated social process of having a
known and trusted individual vouch for another
individual’s identity, and represents it as an abstract
mechanism. To stage it, we attempted to first accustom
users to thinking about the problem of verifying identity,
before encouraging them to progress to a second stage in
which the use of trusted certifiers was available as a
solution to that problem. This required a temporary

strategy for verifying identity that might provide only weak
verification, but would be easy for users to understand.
The obvious candidate for such a strategy was the use of
writing style and references to shared personal data as
material for verifying identity when trading public keys by
electronic mail. The resulting initial stage was thus
designed to meet the following safety requirements:

1. The user must know that accepting a public key
without verifying identity is dangerous.

2. The user must know that they could be spied on or
tricked into accepting forged messages if they
accept the wrong public key.

3. The user must know that they can get some
protection by using the weak verification method
described above, but that it will not protect them
against a skilled, targeted attack.

4. The user must know that they can investigate key
certification when they decide that they want
stronger security.

Comparison testing
We constructed a short paper presentation that explained
the basics of how to use a public key based electronic mail
security system such as PGP. To create a variant
corresponding to our staged design, we inserted an
additional two paragraphs of text, describing the use of our
temporary strategy for weak verification, before the
explanation of key certification. We also constructed a
third, unstaged variant, similar to the presentation of SSL
in most web browsers, which downplayed the role of secret
keys. Test participants were randomly assigned one of the
three variant presentations, followed by a series of written
questions about how the security system would be used in a
variety of scenarios. In answering those questions, 45% of
the participants who received the staged variant were able
to correctly describe the use of key certification, versus
10% of those who received the basic variant, and none of
those who received the third variant. Since the
presentation of key certification itself was identical across
all three variants, this strongly suggests that the staging was
responsible for the greatly increased success rate.

Proof of concept testing
We created a fully functional software simulation of our
staged user interface design and used it to perform formal
scenario based user testing, similar to that described in [6].
Two of our twelve test participants experienced difficulties
that prevented them from trading public keys successfully
and thus did not progress to the portion of the test
involving key certification. Of the remainder, nine out of
ten were able to successfully and appropriately get their
own public keys certified, and six out of ten appropriately
rejected an imposter’s proffered public key for lack of
certification. Success on the latter point was also strongly
correlated with having engaged with the staging by making
use of the weak verification strategy in an earlier scenario,

as was success at answering true/false questions about key
certification in the post-test debriefing questionnaire.
These are excellent results for what is probably the most
difficult usability challenge in public key cryptography,
and appear to accord with the expected usefulness of the
staging in increasing user understanding.

CONCLUSIONS
The technique of user interface staging, appropriately
adapted to the particular needs of computer security in
consumer software, can serve as a powerful method for
safely reducing the immediate complexity of security
concepts for novice users.

ACKNOWLEDGEMENTS
We gratefully acknowledge funding support for this
research. This research was sponsored in part by the
Defense Advanced Research Projects Agency under
DARPA contract N6601-99-28913 (under supervision of
the Space and Naval Warfare Systems Center San Diego),
by the National Science foundation under grant FD99-
79852, and by the United States Postal Service under grant
USPS 102592-01-Z-0236. Views and conclusions
contained in this document are those of the authors and do
not necessarily represent the official opinion or policies,
either expressed or implied of the US government or any of
its agencies, DARPA, NSF, USPS.

We also thank Ka-Ping Yee for serving as a second coder
for our user testing results, and James Landay and James
Lin for aid with user testing laboratory space and
equipment.

REFERENCES
1. American National Standards Institute. ANSI Z535.4

Product Safety Signs and Labels, 1998.
2. J.M. Carroll and C. Carrithers. Training Wheels in a

User Interface. Communications of the ACM, Vol.
27(8):pages 800—806, August 1984.

3. J. Steven Fritzinger and Marianne Mueller. Java
Security. Sun Microsystems White Paper, 1998.

4. Guzdial, M. Software-realized Scaffolding to Facilitate
Programming for Science Learning. Interactive
Learning Environments, Vol 4. No. 1, 1995, 1-44

5. Sun Microsystems. HotJava Browser: A White Paper.
Sun Microsystems White Paper, 1995.

6. Alma Whitten and J.D. Tygar, Why Johnny Can’t
Encrypt: A Usability Evaluation of PGP 5.0.
Proceedings of the 9th USENIX Security Symposium,
August 1999.

	ABSTRACT
	Keywords

	INTRODUCTION
	USEFUL TERMS
	MAKING SOFT STAGING SAFE
	EXAMPLE: STAGING APPLET SECURITY
	SOFT STAGING FOR THE ABSTRACTION PROBLEM
	Computer security is often confusing to novices not only because of the number of new mechanisms to be understood, but also because many security mechanisms are abstract, pared down formal representations of messy, human social concerns such as trust, id
	EXPERIMENTAL RESULTS
	Staging design for public key certification
	Comparison testing
	Proof of concept testing

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

