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Abstract

We describe a system we have built for specifying and checking security constraints.
Our system is general because it is not tied to any particular operating system. It is
flezible because users express security policies in a formal specification language, and it
is easy to extend or modify a policy simply by augmenting or changing the specification
for the current policy. Finally, our system is powerful enough to check for many relations
on the current configuration of a file system; however, it is not powerful enough to check
for more subtle security holes like Trojan horses or weaknesses in the passwords chosen
by the system’s users.

We show how to represent various Unix security constraints — including those de-
scribed in a well known paper on Unix security [GM84] — using our specification lan-
guage. We then describe the results we obtained from running our tools to check an
actual Unix file system against these constraints.

1 Introduction

An important security task faced by any system administrator is that of formulating and
enforcing a security policy. One example of a security policy was proposed by Bell and
LaPadula [BL73). In their model, each user and file is assigned a linear security level (e.g.,
top secret, secret, not secret); roughly speaking, it is only acceptable for users to write files
at their security level or higher and to read files at their level or lower. If we could specify
such a policy and then run a program to check a file system against it, then we could easily
detect security holes on that file system.

We are immediately faced with two problems: that of developing a language in which to
formulate such security policies, and that of developing algorithms to automatically check
that some specified policy is not violated. Ideally, we would like to provide a policy specifi-
cation and checking system that is general, flezible, and powerful. First, the system should
be general enough to allow and understand policy specifications for different operating sys-
tems. Second, it should be flexible enough to allow extensions and modifications to an
existing policy. If a system administrator finds a new security hole for which she would
like to check, she should be able to do so easily, without having to write a special-purpose

program to check for that hole. Finally, the system should be powerful enough to detect
any security hole we might want to specify.

1This research was sponsored in part by the National Science Foundation under a Presidential Young
Investigator Award, Contract CCR-8858087. It was also supported in part by the Avionics Laboratory,
Wright Research and Development Center, Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-
Patterson AFB, Ohio 45433-6543 under Contract F33615-90-C-1465, ARPA Order No. 7597.

USENIX Association UNIX Security Symposium 211



In Proceedings of the 3rd USENIX Security Symposium, September 1992, pp. 211-226

The members of the Miré project at Carnegie Mellon have developed a security speci-
fication system that meets these goals [HMT*+90]. The Miré system is general because it
is not tied to any particular operating system. It is flexible because users express security
policies in a formal specification language, and it is easy to extend or modify a policy simply
by augmenting or changing the specification for that policy. In addition, our policy speci-
fication language might be used to configure existing security tools such as the Integrated
Toolkit for Operating System Security (ITOSS) (RT87]. Finally, the system is powerful
enough to check for many relations on the configuration of the file system; however, it is
not powerful enough to check for more subtle security holes like Trojan horses or weaknesses
in the passwords chosen by the system’s users.

Our system has been implemented on Unix, and one of its components is built using the
Garnet user interface management system [Mye89], which runs on X windows. Not only
is our system real, but it is also practical. Throughout the design and construction of our
system, we have stressed algorithmic efficiency, so the system runs quickly and is effective
at catching policy violations. We describe the tools comprising our system in Section 3.

This paper is a case study. It shows how the Mir security checking tools can be used to
specify a Unix security policy and to check that policy against an existing Unix file system.
Some of the security constraints we examine are taken from previous Miré papers. However,
most have been simply “transcribed” from textual descriptions found in a well-known paper
on Unix security by Grampp and Morris [GM84]. Hence, one important aspect of this paper
is that it demonstrates the utility and expressive power of our policy specification language.

Although the security constraints described here are written for the Unix operating
system, we want to stress that the Mir6 specification languages described in Section 2 can
be applied to operating systems other than Unix. Also, as opposed to security systems like
COPS [FS91] or U-Kuang [Bal88], the power of the Miré system derives from the ease by
which it allows users to express and check new security constraints.

2 The Mird Languages

We focus on two different aspects of the security specification domain. First, we use the
instance language to specify security configurations, that is, fixed access relationships be-
tween users and files on a file system. Since these specifications can be both read and
written, they give users the ability to determine the access rights granted on their files and
to modify those rights. The semantics of a configuration specification is a Lampson access
matrix (Lam71], which specifies for every user and file whether access for that user on that
file is granted or denied for each access permission.

Second, we use the constraint language to specify security policies. The constraint
language is a meta-language of the instance language, since the semantics of a security
constraint is simply a set of configurations. A policy is specified by a set of constraints,
€1,...,Cn. If each constraint represents the set of configurations Cj,...,C,, respectively,
then we say a particular configuration is consistent with the policy if it is a member of
the set N, C;, i.e., if it is in each of the configuration sets represented by the constraints
comprising the policy.

In this section, we describe the instance and constraint languages by example, so that
the constraints described in Section 4 will make sense to the reader. Both languages use a
visual notation that borrows heavily from the higraphs proposed by David Harel {Har88).
The detailed syntax and semantics of both languages are described elsewhere [Hey92).
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2.1 The Instance Language

The vocabulary of the instance language consists of rectangular boxes and of arrows labeled
with access permissions. Boxes represent users and files; they also group users and files to
form a hierarchy. Arrows are either positive or negative; they denote the granting or the

denial of access rights, respectively. An “X” through an arrow denies the access rights
denoted by the arrow.

world file system
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admin - 1 alice
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alice .._fifi______*r private
{write) .
bob {wrlte} - papers
{write}
staff bob
{read}

Figure 1: A Simple Instance Language Picture.

Consider Figure 1, which shows a simple instance language picture. Reading the arrows
from top to bottom, this picture specifies that: 1) every user in the admin group can read
all of Alice’s files, except for those in her private directory (which she alone can read), 2)
Alice can write all of her files, 3) all users in the admin group can write the files in Alice’s
papers directory, 5) all users in the staff group can write all of Bob’s files (including
Bob), and 4) all users can read all of Bob’s files.

entity
. SN
entity subject object
/SN /N /N
subject object world group user file dir
b\
(a) b) device root home

Figure 2: The Built-In Box Types (a) and a Full Box Type-Tree for Unix (b)

One important property of each box in an instance picture is its type. A Mird user can
define an arbitrary type tree to suit her particular system and security policy. Figure 2(a)
shows the three types built into the Miré system, and Figure 2(b) shows how this tree
might be extended to accommodate Unix. Each type specification includes a set of attributes
associated with that type. For example, the entity type includes a Boolean valued attribute
named atomic; this attribute is true for a box iff that box contains no other boxes. Since
the entity type is at the root of the type tree, every box inherits the atomic attribute. We
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can also specify attributes to be associated with types we have added to the type tree. For
example, to accommodate Unix. we can specify that a Boolean valued setuid attribute is
associated with the file type. As we shall see in the next section. types are used primarily
in the specification of constraints.

2.2 The Constraint Language

A picture drawn in the constraint language — henceforth called a constraint picture or
simply a constraint — specifies a (possibly infinite) set of instance pictures. Each constraint
picture can be thought of as a pattern for instance pictures, just as a regular expression is
a pattern for character strings. We now briefly describe the syntax and semantics of the
constraint language; we hope to illustrate the semantics primarily by example.

The building blocks of the constraint language are boz patterns. A box pattern is denoted
by a rectangle like an instance box, but it contains a Boolean predicate written in a simple
boz predicate language instead of a simple name (see Figure 3(a)). An instance box b
matches a box pattern with predicate a if the values of &’s attributes, when substituted
for the corresponding attribute names in o, make « true. The box predicate language
also provides a mechanism to require relationships between instance boxes matching two
different box patterns. Box predicate variables (denoted by identifiers preceded by “$”)
allow users to require that some attributes of instance boxes matching two or more box

patterns are identical. For example, we can specify that the name of some user matches the
owner of some file. ‘

box-predicate 3
) T
Box Pattern Syntax Arrow
box~predicate 3
* * b= ==
— (Direct) Starred
Starred Box Pattern Semantics Arrow Containment Containment
Arrow Armmow
(a) (b)

Figure 3: Renderings of Box Patterns (a) and Constraint Arrows (b)

The constraint language includes three kinds of arrows, each of which may be negated
as in the instance language (see Figure 3(b)). The two arrows we use most in constraints
are the semantics arrow and the containment arrow. The former are labeled with access
permissions just like instance arrows. Two instance boxes b; and b, match box patterns
connected by a positive (negative) semantics arrow labeled with permission p if b1 has (does
not have) access permission p on b,. Boxes 6, and b; match box patterns connected by a
positive (negative) containment arrow if b, is (is not) directly contained in bo. As shown
in Figure 3, there are starred variants to both box patterns and containment arrows; these
allow us to express containment at any level.

The constraint language presented so far only allows us to require the existence of certain
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type = user ,..{:'fi?.e.}— type = file

Figure 4: The Constraint WRITE-READ. This constraint requires that a user
can read a file whenever he/she can write that file.

type = user
&& name = S$A

&& atomic
type = user type = dir
&& atomic && owner = $A

Figure 5: Exploiting Injective Mappings.

entities and relationships between those entities. However, typical security requirements
are often conditioned on the existence of some situation. The constraint language provides
the power to express such conditional constraints: constraint elements drawn with thick
lines represent the antecedent of an implication, while those drawn in thin lines represent
its consequent. For example, the constraint named WRITE-READ shown in Figure 4 is
interpreted as follows. The thick part of the constraint matches any user/file pair such that
the user has write permission on the file. The thin part of the constraint then requires (as
the consequent of the implication) that the user also has read permission on the file. In
summary, this constraint states that “write permission implies read permission”.

In any given matching between instance boxes and constraint box patterns, no two box
Patterns may be matched with the same instance box. Thus, if we have two box patterns
matching user boxes, and the first pattern requires that the user box matching it has a
pérticular name, as shown in Figure 5, then we can conclude that any user box matching
the second pattern does not have the same name as the box matching the first pattern.
Hence, by the variable “§A”, the owner of any box matching the directory box pattern on
the right will always differ from the name of any box matching the user box pattern on
the lower left?. Several of the constraints we present in Section 4 exploit this one-to-one
property of the matching semantics. We use this example involving two “user” box patterns
because it is the only one appearing in our constraints. It would be more straightforward to
write such constraint using constructions like “name # $A”, but our box predicate language
currently does not allow “#”.

3 The Miré Software System

Figure 6 shows the software tools comprising the Miré system and their inter-relations
[(HMT*89]. We classify the tools (and languages) as either front end or back end com-
ponents. The front end components are designed to work independent of any operating
system, while the back end components depend on the particular details of the file system

?We are assuming here that no two user boxes have the same name.
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Figure 6: The Software Tools and Languages Comprising the Miré System.
The tools and languages relevant to this paper are shown with a thick outline.

with which they interact. To check file systems other than Unix file systems, we would only
have to reimplement the back end tools.

The graphical editor allows users to draw and edit instance and constraint pictures,
and the PostScript translator produces PostScript programs to render these pictures on a
printer. Once a user has drawn an instance picture, she can feed it to the ambiguity checker
to check that it is well-formed, and to generate its corresponding access matrix. This access
matrix and the instance itself can then be fed to the constraint checker along with some
constraint picture to check if the instance is consistent with the constraint. The constraint
checker works by modeling the instance picture as a special kind of database and compiling
the constraint picture into a program that queries that database [Hey92).

The tools described so far work independent of any file system. To interact with a Unix
file system, we provide the back end prober and verifier tools. The prober searches some
subtree of a Unix file system and produces an instance picture with the same structure and
security relationships as that file system. The verifier compares a given instance picture to
a file system and produces a list of discrepancies between the two.

To perform the experiments described in this paper, we used both front- and back-end
tools. We first drew our constraint pictures using the graphical editor. We then used the
file system prober to produce an instance picture corresponding to the /usr0 directory of
one of the file systems at CMU. Next, we fed that instance picture through the ambiguity
checker to generate its corresponding semantics (an access matrix). Finally, we fed the
access matrix, the instance picture, and each of out constraint pictures to the constraint
checker to determine if the file system was consistent with each constraint.

216
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4 Unix Constraints

In this section, we describe the constraints we use in Section 5 to evaluate the performance of
the constraint checker. We have adapted some of these constraints from original constraints
suggested in previous Miré papers [HMT*90, HMT*90]. The others were suggested in the
Grampp-Morris article referred to earlier; we have simply translated their written security
suggestions into constraint pictures.

4.1 Miré Security Constraints

The constraints suggested by previous Miré papers are designed fulfill a variety of needs.
Some guarantee “well-formedness” properties of any instance picture, some enforce various
containment relationships relative to the box type system, and others are general security

constraints for Unix. Here, we present some representative constraints from a previous Miré
paper [HMT*90].

4.1.1 GRP-IN-1-W, GRP-IN-W-ONLY, W-IS-ROOT

The constraints shown in Figure 7 place restrictions on the nesting of group and world
boxes. Constraints (a) and (c) introduce a new aspect to the constraint language syntax
and semantics we did not describe earlier. We may associate an integer-valued interval
with each constraint. For each matching to the thick part of the constraint, we count the
number of consistent extensions to the thin part of the constraint, and that number must
fall in the specified interval. If no interval is specified, the default is “[1, 0co]”; this interval
corresponds to the original semantics we described in which for each thick matching, there
must exist (i.e., be at least 1) consistent thin matching.

The constraint named GRP-IN-1-W (a) requires that every group is contained in exactly
one world. However, it is still possible that a group could be contained in a box other than
a world. The GRP-IN-W-ONLY constraint (b) therefore requires that every box containing
a group must be a world. Finally, the w-1S-ROOT constraint (c) requires that a world is
contained in no other box. The negative nature of this constraint stems from its [0,0] integer

range: an instance is consistent with the constraint only if there are no thin extensions to
each thick matching.

type = world type = world

[ A '

type = group type = group type = world

{1,1] ———d (0,0}

(@) (b) ()

Figure 7: The Constraints GRP-IN-1-W, GRP-IN-W-ONLY, and W-IS-ROOT.
These constraints require that each group box is contained in exactly one world
box, that each group box is contained in world boxes only, and that world boxes
are contained in no other boxes, respectively.
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4.1.2  PRIVATE-MAIL

The PRIVATE-MAIL constraint is shown in Figure 8. This constraint assumes that mail
systems organize each user’s mail files in a certain way. Each user’s mail is stored in a
subdirectory of their home directory called “Mail”. That directory contains subdirectories
that partition the mail into categories, and the actual mail files themselves (one file for each
mail message) reside in those subdirectories. For each user whose mail is organized in this

manner, the PRIVATE-MAIL constraint checks that no one besides the owner of the mail files
can actually read them.

type = user type = home && name = $A

&& name = SA

&& atomic type = dir && name="Mail"
type = dir

type = user {read} type = file

&& atomic =c--X----}--4--1-»] s& atomic

Figure 8: The Constraint PRIVATE-MAIL. This constraint requires that a user’s
mail files cannot be read by anyone except them. It assumes that mail files
are stored in subdirectories of a directory named “Mail” in each user’s home
directory.

This is the first constraint we have encountered that exploits the one-to-one nature of the
mapping function described in Section 2.2. In Figure 8, the user boxes matching the two
“user” box patterns on the left must be distinct for each thick matching. This guarantees
that the user matching the bottom “user” box pattern will not have the same name as the
home box matching the outermost “home directory” box pattern on the right.

4.2 Grampp-Morris Security Constraints for Unix

Grampp and Morris have described several possible attacks on the security of a Unix sys-
tem. They point out that most security attacks can be thwarted by educating users and
by ensuring the “existence of administrative procedures aimed at increased security”. In
regards to their first point, users need to be taught the importance of choosing good pass-
words, and they need to be educated fully as to the security mechanisms they are using so
that: 1) they can use those mechanisms to protect their files as they see fit, and 2) they do
not inadvertently leave any files unprotected. As to their second point on administrative
procedures, it is precisely this sort of capability that systems like the constraint checker
provide.

Even if these points have been addressed, there can still be security lapses. Grampp
and Morris go on to describe security holes that may crop up on a Unix system. We have
“transcribed” some of their descriptions into the following constraint pictures.

4.2.1 PASSWD-SAFE

Unix uses passwords as its only barrier to unauthorized access; if a user’s password is
compromised, then an intruder can act as that user with impunity. We must therefore
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guarantee that passwords are adequately safeguarded.

Unix stores encrypted passwords in a world-readable file called /etc/passwd. The rea-
soning behind making the password file world-readable is that “concealment is not security”:
if we were to instead make the password file unreadable, we would be relying on the security
of that one file to protect our entire system. Instead, we rely on the one-way nature of the
encryption function; since it is an abstract entity, it is less vulnerable to attack.

type = root
type = user && name = "/
&& name = $A

&& atomic N di
ype = dir
&& name = "etc"
el Sl | A
[==~/R°""~ && name = "passwd"
&& owner = $A

Figure 9: The Constraint PASSWD-SAFE. This constraint guarantees that only
the owner of the password file /etc/passwd can change that file.

However, the password file certainly should not be writable by anyone except its owner
(the super user), or else someone could install the encrypted version of a known word under
some other user’s entry in the file. The constraint PASSWD-SAFE shown in Figure 9 requires
that no user can write to the password file except its owner. Like the PRIVATE-MAIL
constraint of Figure 8, this constraint uses two separate “user” box patterns to ensure that
only non-owners of the file in question are matched to the bottom “user” box pattern.

The unfortunate truth of the matter is that, even if the password file is protected ac-
cording to the PASSWD-SAFE constraint, Unix passwords are easily compromised in practice.
The simple reason for this weakness is that users tend to choose their passwords poorly. As
Grampp and Morris point out, it is not difficult to write a password cracker program that
guesses possible passwords for each user, and then encrypts each guess for a possible match
against the encrypted password stored in the /etc/passwd file.

4.2,2 WRITABLE-DIR

On Unix, every file and directory has an associated set of protection bits that specify who
may access that file or directory for each relevant access type. Grampp and Morris point out
that on Unix, “underlying directory permissions can adversely affect the safety of seemingly
protected files”. In particular, a user u may have the ability to change a file f, even if f’s
protection bits specify that u is denied write access on f. How is this possible? Suppose
that f resides in a directory d, and that d’s protection bits grant write permission to u.
That means that u can create and delete files in d. So u can change f by deleting the
original f and then creating a new version of f in d. In this way, u can change f’s contents
to be anything she pleases.

Naive users are especially likely to be unaware of this Unix protection feature. The fact
that none of f’s write protection bits is on would seem to imply that the file cannot be
changed. But the writable directory in which f resides gives u the power not only to change
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type = dir
&& owner = SA

type = user
&& name = SA
&& atomic type = dir-dummy

&& atomic
1) L 9”1
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-"'
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type = user ik type = file
&& atomic {write} && atomic
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Figure 10: The Constraint WRITABLE-DIR. This constraint specifies that when-
ever a user has write (i.e., in~del) permission on a directory she does not own,
she should also have explicit write permission on every file in that directory.

the file, but to delete it entirely! We clearly need a constraint to detect occurrences of this
situation. However, if we translate this constraint directly, it may be overly sensitive. It is
not uncommon for users to give themselves write permission on a directory they own, but
to also explicitly deny themselves write permission on some of the files in that directory (to
prevent them from being changed accidentally). For example, this situation arises in the
use of the RCS version control system, which automatically turns off write permission on
files that have not been explicitly “checked out” for modification.

Thus, the constraint we wish to express is that: “For any directory on which a user
has write permission and which they do not own, they must have explicit write permission
on all files contained in that directory”. This constraint is shown in Figure 10. There are
several points we should make about this constraint.

First, it is the first constraint we have seen so far that involves permission on a directory.
Even though Unix overloads the protection bits on files and directories, our Unix prober
distinguishes write and read permissions on files from those on directories. On directories,
the prober instead generates the permissions in-del (insert-delete) and 1ist, respectively.

Second, since permissions granted on a directory are completely unrelated to those
granted on the directory’s parent, it would be difficult for the prober to represent access
relations on directories directly. The prober therefore takes the following simple approach,
For each directory box, it installs a special atomic “dummy” box inside that directory
box, and it draws arrows to the dummy box so that the access relations on the directory
in the file system are represented in the instance by the relations between users and the
unique dummy box inside that directory. The prober also gives the dummy box a type of
dir-dummy; this new type becomes a child of the object type in the type-tree.

4.2.3 SETUID-SAFE

Many Unix security flaws arise from the set-userid, or “setuid”, facility. This feature of the
Unix protection semantics is a powerful tool, and it allows people to create systems that
would be difficult to create otherwise. But as Grampp and Morris point out, “the feature
is by no means tame”. They suggest that setuid programs should only be used as a means
of last resort, since each setuid program introduced onto the system is a potential security

hole.

Grampp and Morris also state that “setuid programs that are writable by anyone should
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type = user
&& name = $A
&& atomic

type = file
&& atomic
type = user {write} && setuid

&& atomic @ fece-- e me-pd && Ownexr = SA

Figure 11: The Constraint SETUID-SAFE. This constraint guarantees that no
setuid program is writable by someone other than its owner.

type = user
&& name = $A

type = home

&& atomic && name = SA
{read} type = file
type = user f---"° )( ..... -»§ && atomic ., o
P omi && name = ".login
atomic && owner = $A
L-----x ----- - Py

{write}

Figure 12: The Constraint LOGIN-SAFE. This constraint guarantees that each
user’s “login” file cannot be read or written by anyone but them.

be considered threatening”. The reason is that any user can write a copy of the shell, for
example, onto the setuid program. That user can then run the newly copied shell; since
it is a setuid program, it will be running as its owner. This bit of subterfuge thus gives a
malicious party the power to impersonate the owner of the writable setuid program.

The SETUID-SAFE constraint shown in Figure 11 reports any setuid program writable by
someone other than its owner. The prober makes the setuid attribute true of any instance
box corresponding to a file on the file system whose setuid bit is turned on. This constraint
again exploits the one-to-one requirement on the mapping to guarantee that the name of
any user matching the bottom “user” box pattern is not the same as the owner of the
setuid program matching the “file” box pattern.

4.2.4 LOGIN-SAFE

When a user logs in and/or starts a new shell, Unix automatically executes certain shell
“scripts” in that user’s home directory. For example, at login, the system executes the file
named “.login”. Suppose user u’s “login” file is writable by some other user u'. Then ¢’ is
free to edit the “login” file at will. With this power, v’ can edit the script to make a copy
of the shell (in some directory private to u’), turn on the setuid bit of that copy, and make
it world-executable. Since these commands will be executed when u logs in, the shell copy
is owned by u. Thus, once u logs in and unwittingly creates a copy of the shell owned by
him, u’ can execute that copy and impersonate u.

This example clearly illustrates that scripts such as “.login” should never be writable
by anyone but their owners. The LOGIN-SAFE constraint shown in Figure 12 tests for this
condition. The thick part of the constraint matches two distinct users and every file named
“login” contained in a home directory. As before, we exploit the semantics of the constraint
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language to guarantee that the instance box matching the bottom “user” box pattern does
not have the same name as the instance box matching the “home directory” box pattern.
The thin negative write arrow then requires that that user does not have write access on
the “.login” file.

Grampp and Morris also recommend that such files should not be readable by anyone but
their owner either. Their reasoning is that the ability to read these files allows an intruder
to determine the user’s search path, thereby giving him clues as to candidate directories for
trojan horses. The LOGIN-SAFE constraint therefore also includes a thin negative read arrow
to enforce this requirement. However, as Grampp and Morris point out, the enforcement of
this aspect of the constraint “offers little additional protection, as vulnerable {search path]
components can be deduced in other ways”.

5 Constraint Checking Results

The constraint checker’s payoff is its ability to find security holes. Even our simple exper-
iments uncovered some problems. If we had performed more comprehensive experiments,
we may very well have found more. Instead, our focus was on gathering measurements of
the constraint checker’s performance.

To perform our tests, we applied our Unix prober to the /usr0 subtree of a mainframe
VAX at CMU. The instance picture produced by the prober contains 46 groups, 147 users,
677 directories, 5,195 files, and a total of 17,614 arrows. The access matrix produced by
our ambiguity checker tool on this instance picture contains a total of 2,490,033 entries.

We then checked this instance with respect to each of the constraint pictures described
in Section 4. The constraint checker models the instance picture (and its access matrix) as
a database. It first compiles the constraint picture into a query program over this database;
this compilation usually takes less than a second. To check the constraint, the checker
executes the query program. We divide the time required to execute the query program
into two parts: the time to load the instance database for that query, and the time required
to perform the query itself.

Table 1 shows the times required for these two phases on each of the constraints. These
experiments were performed on a DECstation 3100 running the Mach operating system.
We have also run these constraints against other subtrees of the same file system, such as
/etc, /dev, and /sys0. From this table, we see that most constraint checks required 1 or
2 minutes of CPU time. The notable exceptions were the WRITE-READ and WRITABLE-DIR
constraints. These constraints took longer simply because there were more ways to match
the thick part of the constraint to the instance, so there were more cases to check. In
general, we have shown that the constraint checking problem is I15-hard [Hey92].

Our experiments uncovered some constraint violations, which we summarize here. The
number of violations we report in each case is the number of thick matchings of the constraint
to the instance such that no thin matchings existed. The checker has the tendency to
produce voluminous output. We could easily implement simple filters to help solve this
problem, but we suspect there may be more sophisticated and flexible solutions.

5.0.1 PRIVATE-MAIL — 438 Violations

The diagnostic output for this constraint/instance pair illustrates the problem with the
constraint checker’s verbosity. The 438 violations reported in this case amount to a total
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Constraint Name | # Elts. CPU Seconds

GRP-IN-1-w 142=3 30.8/0.1
GRP-IN-W-ONLY | 2+1=3 19.4 / 0.1
W-1S-ROOT 1+42=3 20.8 /0.0
WRITE-READ 3+1=4 39.8 / 194

PRIVATE-MAIL 94+1=101} (41.6/51.4)
PASSWD-SAFE 7T+1=38 [31.2/0.0]
WRITABLE-DIR 8+1=9 || (41.9/1,300)
SETUID-SAFE 3+1=4 [23.3/0.0]
LOGIN-SAFE 54+42=7 || {(58.6/713)

Table 1: Constraint Checker Running Times (in seconds). Values in the “#
Elts.” column indicate the number of thick, thin and total elements, respectively,
in the constraint for that row (including implicit containment arrows). An entry
of the form z/y in the row labeled with constraint C means that in the process
of checking constraint C, it took z CPU seconds to load the instance database,
and y CPU seconds to check the constraint. Entries in square brackets indicate
that the query time y is trivial, while those in angle brackets indicate that
the corresponding instance is inconsistent with the corresponding constraint.
Inconsistencies indicate potential security holes.

of only three world readable mail files. Since there are 147 users on the system, 146 users
were found to be able to read each of these three files when they should not have.

The three files found by the constraint checker are not mail messages per se. One of
the mail systems at CMU keeps an index of messages in each mail directory. The index
summarizes the mail messages in that directory, including who sent the message, when it
was sent, and the subject line of the message. Even this summary information may be
considered sensitive by some users. Upon closer inspection, two of the three index files were
also found to be writable by someone other than their respective owners!

5.0.2 WRITABLE-DIR — 26,435 Violations

Obviously, there were too many violations in this case to enumerate them all. However, we
can summarize some of the major security holes we found. One user alone accounts for many
hundreds of the violations. This user has left many of his directories writable to members
of the theory group. Since this group includes 25 of the machine’s users, giving such a
large number of people the ability to delete and overwrite files at will seems dangerous. We
surmise from the names of the vulnerable directories that some of them probably contain
sensitive files. In many cases, these same files were also readable by all members of the
theory group. Perhaps most surprising is that one of this user’s mail directories is writable
to the same group of people.

Perhaps the most serious security hole detected by this run of the constraint checker is
the protection on a directory containing bulletin board files. The protection bits on this
directory designate it to be world writable. Thus, any user on the system can overwrite or
delete any of the bulletin board files in the directory. These bulletin board files are read
by a large number of users, so this is a serious threat. Moreover, since any user can also
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:ad these files, a malicious user could easily make subtle changes to any of the files, and it
would be impossible to track down the culprit. It is worth noting that since this directory

contains over 100 files, and since there are approximately 150 users on the system, this one
security hole is responsible for approximately 15,000 of the reported violations.

5.0.3 LOGIN-SAFE — 2,190 Violations

Almost all of the reported violations were due to the fact that nearly every user on this
system has a world-readable “.login” file (thus, the number of violations reported is approx-
imately the square of the number of users). However, when we removed the negative read
semantics arrow from the constraint, we found only 24 violations. Without the negative
read arrow, this constraint only detects “.login” files that are writable by people other than
their owners. Violations of this more restricted constraint are much more serious. On this
particular system, one user has given write permission to the members of the theory group
on his “login” file. These 24 people have the ability to maliciously alter his “login” file
and to install code to impersonate him at will.

6 Conclusions

Specifying and manipulating security specifications is not a toy problem. It is a real problem
faced by anyone sharing a computer system with other users. Our constraint language and
its associated compiler and run time system provide a mechanism unlike any other of its
type to solve this problem. The primary advantages it offers over existing tools are its
operating system independence and the means by which it allows users to easily tailor a
security policy to their needs. Moreover, the constraint language also gives users the power
to specify abstract security models. It can thus be used to drive or configure other security
modeling tools.

This work can be extended to solve other problems. For example, as it is implemented
now, the Mird system we have described is a static security checker. However, our techniques
could be used to implement an automatic file system security checker that continuously
monitors the file system for security holes. To make such a system practical, we would
have to modify our algorithms to interpret incremental changes to the file system or to the
security policy.

The work we have described in this paper is a specific application of a general approach.
Our approach has been to design formal specification languages for a particular domain
in the area of computer systems, and then to build efficient algorithms to process those
specifications. Our success in the application of this technique to the domain of file system
security leads us to believe that it holds promise for other domains, such as network security,
parallel algorithm design, and computer systems management.

7 Where to Get More Information on Miré

If you have any questions about the Miré project, you can send e-mail to the address
miroQ@cs.cmu.edu. There is also a video tape available that summarizes the results of the
Miré project, and shows each of the Miré software tools in use. The video is approximately
20 minutes long, and is available for $15 within the U.S. and $17 internationally (these prices
include first class shipping and handling). Requests for the video should be addressed
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to: Industrial Affiliates Office, School of Computer Science, Carnegie Mellon University,
Pittsburgh PA 15213. Checks should be made payable to “Carnegie Mellon University”.
The first author’s Ph.D. thesis {Hey92], as well as the sources for the Miré tools, are
available for anonymous FTP from the site named “ftp.cs.cmu.edu” (the IP address is
[128.2.206.173]). When you FTP to this host, use the login name “anonymous” and give
your full e-mail address as the password. Then, type “cd /afs/cs/project/miro/ftp”
(security restrictions in the FTP server will not allow you to “cd” into any intermediate
directory along the path, so you must type this command as shown). Once in this directory,

you can type “get ftp-instructions”;this will copy an ASCII text file to your machine
that explains how to get the thesis and/or software.

8 Acknowledgements

We would like to thank Amy Moormann Zaremsky and Jeannette Wing for their comments
on portions of this draft. We would also like to thank Karen Kietzke for her help and
patience in testing the ambiguity and constraint checkers.

References

[Bal88) Robert W. Baldwin. Rule Based Analysis of Computer Security. PhD thesis,
MIT, Cambridge, MA 02139, March 1988. Tech Report MIT/LCS/TR-401.

(BL73] D. E. Bell and L. J. LaPadula. Secure Computer Systems: Mathematical Foun-
dations (3 Volumes). Technical Report AD-770 768, AD-771 543, AD-780 528,
The MITRE Corporation, Box 208, Bedford, MA 01731, November 1973.

[FS91] Daniel Farmer and Eugene H. Spafford. The COPS Security Checker System.
Technical Report CSD-TR-993, Purdue University, West Lafayette, IN 47907-
2004, 1991.

[GM84] F. T. Grampp and R. H. Morris. Unix Operating System Security. ATéT Bell
Laboratories Technical Journal, 63(8):1649-1672, October 1984. Part 2.

(Har88]  David Harel. On Visual Formalisms. Commaunications of the ACM, 31(5):514~
530, May 1988,

[Hey92) C. Allan Heydon. Processing Visual Specifications of File System Security. PhD
thesis, Carnegie Mellon University, School of Computer Science, 5000 Forbes
Ave., Pittsburgh, PA 15213-3890, January 1992.

[HMT+*89] Allan Heydon, Mark W. Maimone, J. D. Tygar, Jeannette M. Wing, and
Amy Moormann Zaremski. Miré Tools. In Proceedings of the 1989 IEEE Work-
shop on Visual Languages, pages 86-91, Los Alamitos, CA, October 1989. IEEE
Computer Society Press.

[HMT+*90] Allan Heydon, Mark W. Maimone, J. D. Tygar, Jeannette M. Wing, and
Amy Moormann Zaremski. Miré: Visual Specification of Security. IEEE Trans-
actions on Software Engineering, 16(10):1185-1197, October 1990.

USENIX Association UNIX Security Symposium 225



In Proceedings of the 3rd USENIX Security Symposium, September 1992, pp. 211-226

[Lam71] B. W. Lampson. Protection. In Proceedings Fifth Annual Princeton Confer-

ence on Information Science Systems, pages 437-443, 1971. Reprinted in ACM
Operating Systems Review, Volume 8, Number 1, (January 1974), pages 18-24.

[Mye89] Brad A. Myers et. al. The Garnet Toolkit Reference Manuals: Support for
Highly-Interactive, Graphical User Interfaces in Lisp. Technical Report CMU-
CS-89-196, Carnegie Mellon University, School of Computer Science, 5000
Forbes Ave., Pittsburgh, PA 15213-3890, November 1989.

[RT87] M. Rabin and J. D. Tygar. An Integrated Toolkit for Operating System Se-
curity. Technical Report TR-05-87, Aiken Computation Laboratory, Harvard
University, May 1987.

226 UNIX Security Symposium USENIX Association



