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Chapter 24

Strongbox

J. D. Tygar
Bennet S. Yee

24.1 Introduction

This chapter discusses the interfaces to Strongbox, a library of routines providing security for
Camelot. The goals of Strongbox include enabling programs to run in a secure environment while
making only minimal assumptions about the security of the operating system kernel and other
system components. These programs are called self-securing. We have made the use of Strongbox
relatively transparent to programmers who write Camelot servers. This allows existing servers
to be retrofitted with security and allows programmers to separate security from other concerns.
Strongbox provides facilities to protect the privacy of data and the integrity of data from alteration,
and to quickly implement a variety of policy decisions about data protection. The current version
of Strongbox does not yet address several secondary concerns including traffic analysis of data
message exchange, communication by adjusting the use of network resources (the covert channel
problem), or the availability of system components (the denial of service problem). Future versions
of our work will address these concerns. However, Strongbox can be used in conjunction with any
solution to these secondary concerns.

At the core of Strongbox are new routines for authentication and fingerprinting. End-to-
end private key encryption protects the privacy and integrity of messages passed between clients,
servers, and other system components. The authentication algorithm provides us with support for a
capability based protection system. This authentication system differs from previous authentication
and key exchange protocols such as Needham-Shroeder [84] in that it can be proved to not leak any
information that would allow eavesdroppers to masquerade as either party.

Integrity of data or program text files is checked in Strongbox by using provably secure
cryptographic checksums. These checksums, called fingerprints, are computed prior to storing data
in the file system and are checked when the system retrieves data. Further details about these
algorithms and the assumptions we use can be found in Section 24.7

In Section 24.2, we discuss the design goals of Strongbox — the functional goals for the
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system, the performance goals, and the design constraints. In Section 24.3, we discuss the overall
architecture of Strongbox, giving an overview of how Strongbox works. In Section 24.4, we present
cookbook-style instructions on how to convert existing, non-secure Camelot clients and servers
to use Strongbox, building on the previous jack and jill examples given in Chapter 5. In
Section 24.5, we discuss the design of the secure loader and the white pages server, key components
of Strongbox. In Section 24.6, we present the administrative interface provided by Strongbox to
manipulate the access control list and to check data integrity. In Section 24.7 we discuss two basic
algorithms used to create self-securing programs. In Section 24.8.3, we give performance figures
and code size for these algorithms, and discuss issues of booting Strongbox.

24.2 Design Goals

Security is a pressing problem for distributed systems. Distributed systems exchange data between
a variety of users over a variety of sites which may be geographically separated. A user who stores
important data on processor A must trust not just processor A but also the processors B,C, D, . ..
with which A communicates. The distributed security problem is difficult, and few major distributed
systems attempt to address it. In fact, conventional approaches to computer security are so complex
that they actually discourage designers from trying to build a secure distributed system. A software
engineer who wishes to build a secure distributed data application finds that he must depend on the
security of a distributed database which depends on the security of a distributed file system which
depends on the security of a distributed operating system kernel, etc. It is hard to make a distributed
system work efficiently without considering security issues. Strongbox addresses the issues by
supporting self-securing programs which use only minimal assumptions about the security of the
underlying kernel.

24.2.1 Functional Goals

The primary functional goals of Strongbox are to guarantee the integrity and privacy of data handled
by it. Section 24.3 shows that the architecture of Strongbox protects data from modification or
guarantees that data messages will be protected by end-to-end encryption. In Section 24.7 we show
that Strongbox’s fingerprinting and authentication algorithms do not leak information.

An additional functional goal of Strongbox is to provide Camelot programmers with a security
library that can be easily used in a server or client. We do not expect programmers to master the
subtleties of a delicate protection mechanism. We have structured our interface to Camelot so that
converting an existing client server to be secure requires only a few simple modifications to the
program text. In fact, it is so easy to modify clients and servers that it is possible to write an AWK
program which takes as input either an insecure server and a list of server subsystems or an insecure
client and computes, as output, a secure server or client.

24.2,2 Performance Goals

Security is typically expensive. It is not uncommon for secure versions of operating systems to
run an order of magnitude slower than their insecure counterparts. We view this as completely

1AWK is the UNIX utility for pattern scanning and processing. [4]
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unacceptable for real applications; we demand that the overhead for security, amortized over all
computations, should use no more than 5% of the processor cycles. We have strived to make our
security routines extremely fast, and we give our performance figures in Section 24.8.3.

Another measure of effectiveness of security code is the size of the code. The smaller the code
is, the less likely it is to contain errors and the easier it is to verify, whether by formal or other
methods. Since our library isolates simple points of communication, we believe that we have met
those goals.

24.2.3 Constraints

It is necessary to make assumptions when building secure facilities. For example, if the system
design calls for use of cryptography one must make the assumption that the cryptosystem used
can not be deciphered by unauthorized agents. Since cryptosystems can always be broken by non-
deterministic agents (which can simply guess the cleartext and the key and verify that the encryption
function holds) if we adopt the practice of considering operations in P as tractable and operations in
NP as intractable, then showing a secure cryptosystem exists is equivalent to showing P is different
from NP, a well known open (and difficult) problem.

In building Strongbox, we made several assumptions. First, we made a complexity assumption
that some problem, such as factoring large integers or inverting DES, is intractable. We assumed that
our base operating system, Mach, supports protected address spaces, including virtual address spaces
stored on adisk. We assumed that the Disk Manager and the secure loader do not reveal authentication
information or fingerprint keys to any other agent. We assumed that application programs use our
protection scheme uniformly, and do not explicitly bypass protection mechanisms.? We assumed
that our algorithms were implemented without error, and that the compiler produced correct object
code for them.

We did not address issues of denial of service, covert channel analysis, or of leaking information
through traffic analysis of messages. Although we have not explicitly addressed these problems,
we conjecture that they may be solved by approaches motivated by the self-securing paradigm. For
example, Camelot supports fault tolerance, and Strongbox makes that fault tolerance secure. We
believe that the security facility on Camelot could be extended to support protection against denial of
service attacks. (For some theoretical contributions to these issues, see [48, 92].) In loosely-coupled
distributed systems, covert channel analysis may be considerably simplified by assigning to entire
processors just a single security classification. Interactions between security levels will take place
over the data network, which is a simpler object to examine for covert channels than the entire
distributed operating system. We are continuing to explore approaches such as these in ongoing
research.

24.3 Strongbox Architecture

Strongbox is implemented by three components: a secure loader, a library of security routines that
securc servers and secure clients use, and a white pages server (a repository of essential authentication
information). Figure 24.1 shows the components of the Strongbox and their relationships to each
other, and to Mach and Camelot.

2The cutrent release of Camelot does not in fact satisfy this, since log values are written in unencrypted log files.
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Figure 24.1: Strongbox Architecture

In this figure, we show how Strongbox interacts with Camelot and Mach. Each of
the large boxes denote a computer. The client, server, and white pages server is
shown as running on different machines; this is not a requirement of Strongbox,
however, so they may all reside on the same computer. The lines among the client,
server, and white pages server boxes denote communication that may be visible
on the communication network. Within each computer, the smaller boxes denote
the major software components: the Mach operating system kernel, the basic
Camelot servers which uses the Mach services, the Security Library which is used
by every secure server or client, the white pages server, the secure loader, and
the secure clients and servers. The curved arrows denote the fingerprint operation
which verifies that none of the files have been corrupted.
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To run a secure task, we access the secure loader. The secure loader first copies the load image
of the task into memory, and then verifies that the load image has not been corrupted while it was
stored in the file system, The check must be done after the loader reads the image into memory
‘because we do not trust the file system: if we just check the copy of the image in the file, we would
be vulnerable to an adversary modifying the image during the timing window between when the
loader checks the image and when the loader actually loads it. To do the checking, the secure loader
calculates a cryptographic checksum, called a fingerprint. After the fingerprint has been verified
1o be identical to the onc computed when the image was last written to the file system, the secure
loader initializes the task’s address spacc and starts the task running. We assume that the software
development tools are secure against tampering, and that they can be trusted to write out the load
image correctly;‘ the software development may be done on a secure, isolated machine or on a
machine with tools that have been converted to using Strongbox's fingerprinting. The initialization
of the secure task is performed by using Mach’s virtual memory primitives to set up the address
space and thread control primitives to set up the initial contents of CPU registers.

After the secure task starts running, the secure loader sends it the solution to a randomly
generated authentication puzzle which will be used later for authenticating the task to others, and
checks in the puzzle (but not the solution) with the white pages server. The secure task has
handshaking code as part of its startup sequence which receives the authentication puzzle solution
as well as a capability token for accessing the white pages server. Since we know the load image is
correct, this startup sequence could not have been tampered with. This communication is completely
local to a machine and thus will not appear in any network communication; furthermore, note that
the puzzle solution never appears in the file system. (Section 24.7 describes the fingerprinting and
authentication algorithms.)

The authentication puzzle/solution pairs are inexpensive to generate; finding a solution when
given just the puzzle, however, is extremely difficult (equivalent to factoring a composite number
that is the product of two large primes). Checking the validity of a solution is also easy. This work
property is analogous to that of password schemes where guessing a randomly generated password
is extremely difficult. Unlike conventional password schemes, however, it has the additional benefit
that the validity of the puzzle solution can be verified without revealing any information on it (the
zero knowledge property — see Section 24.7).

For Camelot applications, the secure loader is a separate program that runs directly on Mach.
For servers, the secure loader is part of the Disk Manager, which Camelot already uses to load
servers. Because the secure loader is incorporated in the Disk Manager, we assume the integrity of
the Disk Manager. (See Section 24.8.1 for the discussion on checking the integrity of the secure
loader and Disk Manager at boot-time.)

Our protection system is based on capability tokens (capabilities). The capabilities are used as
identification tokens which specify the list of operations the holder is allowed to invoke. Most of the
time, capabilities are simply used to identify a user in a way that is similar to Andrew tokens [99] ~
the operations listed under the capability is just those that the user is permitted. In addition, however,
they can also be used for group identity/membership or for implementing the UNIX real/effective-uid
style of access control where applications can have the access rights of multiple parties [20}.

The security library routines perform several tasks: they maintain the access control database
for the server; they authenticate the identities of the clients and the server; and they maintain the
database of capabilities. The protection system uses these capabilities to check access permissions.

The white pages server maintains a list of tasks and the authentication puzzles which identify
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them. Whenever an agent is lo be authenticated, the avthenticator asks the white pages server for
the authentication puzzle. The white pages server also maintains the fingerprints of the load images
for the secure loader.

The white pages server, the secure loader, and Camelot are all started up at boot time before any
user tasks can be started. At this time, the secure loader and Camelot generate new authentication
puzzies/solutions for themselves, check in the puzzles with the white pages server, and the white
pages server registers itself with the Camelot name server. It is possible to substitutc a process’s
name server port so that its port lookups will give erroncous results. Such substitution, however,
does not corrupt the servers. To run a client that a server will listen to (i.e., for which servers will
find a puzzle when the servers look in the white pages), the client must be started up by the secure
loader since the white pages server will accept new entries only from the secure loader.

A typical session is as follows: The client wishes to invoke a remote operation by a server to
which it has not authenticated itself. It uses a securc remote procedure call (RPC) handling macro,
which attempts the operation. The operation fails, returning CAP.MECH_PERMISSION.DENIED,
at which point the macro looks up the server’s authentication puzzle with the white pages server
and authenticates the client and the server identities to each other. At the server side, the protection
system also looks up the client’s puzzle with the white pages server as part of the authentication.
After authentication completes, all traffic between clients and servers are encrypted.

Depending on the security of the paging devices, external memory managers may be used
to protect the integrity of memory by fingerprinting pages as they go onto disk and verifying the
fingerprint as they come off. To protect against leaking information as well as integrity, encryption
is required.

24.3.1 Security Library Architecture

The security library provides client-server authentication, capability-based access to a server, and
access control bookkeeping routines used in a server. We have designed the security library such
that typical usage is very similar to that of the standard, non-secure Camelot Library.

In the Camelot Library, the SERVER_CALL macros handle the transactional bookkeeping
for invoking an RPC. For secure communication between the client and the server, the various
versions of Camelot’s SERVER_CALL macros are supplanted by versions that are prefixed by SEC_.
(For example, SERVER_CALL becomes SEC_SERVER.CALL.) The SEC_ macros automatically
perform authentication and provide the client with a capability to the server. The capability is used
transparently; the client program need not reference it at all. The secure macros automatically
re-authenticate after server failure, thereby allowing transparent recovery for most applications.

The client may elect to perform explicit authentication instead of using the automatic authenti-
cation provided. This gives the client control over the management of the capabilities: a client may
authenticate once as itself and another time as a member of a privileged group. By using versions
of the SERVER CALL macros prefixed by SEC_CAP , a client may specify the capability to be used
with the server. This gives a client the ability to use the access rights of two or more agents. The
details of authenticated SERVER_CALLS are described in the following section.

Each server has two databases that are maintained by the protection routines. The first, stored in
recoverable storage, contains a mapping from user names to permissions. When a client authenticates
successfully, the protection routines construct a new capability based on the permissions in this
database. The protection routines return this new capability to the client and also enter it into
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the second database. The permissions in the first database are changed via special capability
management routines the access to which is controlied in the same way as any other RPC. The
second database, stored only in virtual memory, maps capabilities to permissions and is consulted
cach time an RPC request arrives to check that the client has permissions to invoke the requested
operation. The authentication RPCs, of course, are excmipt from the permissions check. The reason
that there are two databases is to minimize the amount of memory leaked due to stale capabilities:
since most capabilitics never expire, we keep the capabilities in non-recoverable memory to prevent
memory leak from capabilitics to which references has been lost by all clients. Clients that survive
a scrver crash must reauthenticate in order to regain their privileges.

It is easy to convert an existing non-secure server to be secure because only the initialization
code and the argument declarations for the operation procedures are affected. Strongbox provides
a separate, high level message demultiplexing procedure that performs the permission check. De-
cryption is performed here also. The appropriate key is inferred from the capability argument’s
index field, which is not encrypted. The demultiplexing procedure then hands the messages over
to the individual subsystems’ (lower level) demultiplexing procedures which unpack the arguments
and make the actual server-side procedure call. This service is performed for all RPCs except those
in the authentication protocol. By performing the permission check at this point, we eliminate the
need to modify the service procedures’ body, and reduce the work required to make a server secure.

24.4 Converting Camelot Clients and Servers to be Secure

This section is a cookbook guide to the conversion of Camelot clients and servers to use Strongbox.
To illustrate the changes nccessary, we will modify the Jack and Jill example given in 5. We first
describe the changes to the clients, using Jack as an example, and then the changes to servers, using
Jill as an example.

The required changes are minimal and a simple AWK program [4] could be used to automatically
convert existing programs. Typically, however, attention should be given to the security policy that
is desired and further changes may be necessary.

24.4.1 Changes to Clients

In order to make clients secure, several macros called inside Camelot clients must be replaced by
their secure counterparts. These macros are defined in the Camelot include file strongbox.h.
This file is included in secure servers’ header files automatically generated by the Message Interface
Generator (MIG). Here are instructions for converting clients to be secure:

1. Non-secure Camelot clients call INITIALIZE APPLICATION (name) to register the client
with the Transaction Manager. SEC_INITIALIZE APPLICATION (name) replaces this
macro in secure clients. This macro initializes the data structures used for authentication and
for maintaining a secure channel once authenticated. If the client was not loaded by the secure
loader, this macro aborts the execution of the client. For example, to make the Jack applxcatlon
secure, we would replace the code fragment in jack.c

if(VINITIALIZE APPLICATION("Jack"}))
{
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printf("Camelot is not running on this nodei\n"};
exit(l);

by

if (!SEC_INITIALIZE_APPLICATION("Jack"))

{
printf(“Both Camelot and the White Pages\n");
printf("server must be running on this node!\n");
exit(1l};

2. Non-secure clients call servers using SERVER.CALL, and SERVER_CALL_2. In sccure clicnts
the calls are replaced by SEC_SERVER_CALL, and SEC_SERVER_CALL_2. The secure versions
of the server call macros perform necessary authentication steps. The first time a client calls
a server with one of the secure macros, it looks up in the white pages the entry defining the
server’s authentication puzzle. (Note that the connection from the client to the white pages is
guaranteed to be secure since it is an authenticated connection. The initial puzzle associated
with the white pages is loaded into the client by the secure loader.) The macros ARGS and
NOARGS pass certain parameters from the client to the server. In secure clients, these macros
are replaced by SEC_ARGS and SEC_NOARGS respectively, which also pass secure parameter
information such as the capabilities possessed by the client. For example, to make Jack secure,
we would replace the code fragments in jack.c

SERVER_CALL(."Jill", jill_read(ARGS index, &value));

SERVER_CALL("Jill", jill_write(ARGS index, value});

by
SEC_SERVER_CALL("Jill", jill_read(SEC_ARGS index, &value));

SEC_SERVER_CALL("Jill", jill write(SEC_ARGS index, value));

24.4.2 Changes to Servers

Converting Camelot servers to be secure is just as simple as the client conversion. Once again we
replace server macros with their secure counterparts. We also add some new macros and specify
informatjon to specify protected entry points. Here are the modifications necessary to make servers
secure:

1. To include appropriate Strongbox macro definitions, in the . defs file insert after #include
<camelot.defs> theline #include <strongbox.defs>. The modified RPC defini-
tion file should be compiled by MIG with the -s flag, i, mig -s jill.defs.
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2. Make the macro call SEC_DECLARATIONS the first entry of the recoverable storage decla-
rations. This allocates storage for Strongbox internal variables.® For example, to make Jill
sccure, we would replace the code fragment in 3111 globals.h

BEGIN_RECOVERABLE_DECLARATIONS
struct jill_array_ struct

{
int data[ARRAY_SIZE];

} jill_array;
END_RECOVERABLE_DECLARATIONS

by

BEGIN_RECOVERABLE_DECLARATIONS
SEC_DECLARATIONS;
struct jill_array_struct

{
int data[ARRAY SIZE];

} jill_array;
END_RECOVERABLE_ DECLARATIONS

3. The security system must know the location of all protected entry points in a server. The macro
SEC_SYMTAB(subsys) generates the appropriate information to manage the entry points
defined by the MIG subsystem subsys. The SEC_SYMTAB (subsys) declarations should
all appear consecutively immediately before SEC_.INITIALIZE_SERVER, which replaces
INITIALIZE_SERVER. The SEC_INITIALIZE_SERVER macro terminates the list of entry
points and calls the server initialization code. For example, the Jill server has only one system:
"ji11", and to make Jill secure, we would replace the code fragment in jill.c

INITIALIZE_SERVER(3jill init, FALSE, "Jill");

by

SEC_SYMTAB(jill);
SEC_INITIALIZE_SERVER(Jjill init, FALSE, "sJill");

4. The first initialization transaction executed by a server is a special initialization procedure. This
procedure is the first argument to INITIALIZE_SERVER. To initialize access control specific
Strongbox data, the macro SEC_INIT must be called as part of this initialization procedure.
For example, to make Jill secure, we would replace the code fragmentin §ill.c

int jill_init()

BEGIN("jill init")
struct jill_array_struct temp;
int i;

3SEC_DECLARATIONS also generates some padding between server data and Strongbox data. When programmers
modify servers so that new recoverable storage is used, this padding may be adjusted to retain recoverability of previously
stored objects. If the size of the recoverable storage is changed, use SEC_DECLARATIONS.PAD (pad ) where pad is the size
of the desired padding in words. pad typically is SEC_DECLARATIONS.DEFAULT.PADDING - delta, where delta
is the change in the size of the recoverable storage. The default value of SEC_DECLARATIONS DEFAULT_PADDING is
1024 bytes, so this can only accommodate relatively small size changes.
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/* Load up a temporary copy of the array with -1‘s */
for (i=0; 1 < ARRAY_SIZE; i++)
temp.data(i] = -1;

MODIFY(REC(3jill_array), temp);
END

by
int jill_init()
BEGIN("jill_init")
struct jill_array_struct temp;
int 1;
/* Load up a temporary copy of the array with ~1's */

for (i=0; i < ARRAY_SIZE; i++)
temp.data(i] = -1;

MODIFY(REC(jill_array), temp):
SEC_INIT;
END

5. In Camelot, the macro START_SERVER causes the server to go into a state in which it may
accept requests and process transactions. In the secure version of servers, this macro is replaced
by SEC_START_SERVER, which starts the server so that it can only accept secure server calls.
If START_SERVER.2 is used, it is replaced with SEC_START.SERVER_.2. For example, to
make Jill secure, we would replace the code fragment in jill.c

START SERVER(jill_server, 10, 0);

by

SEC_START_SERVER({jill_server, 10, 0);

6. In secure servers operation procedures are passed the capability used by the client to access the
entry point of the server. This capability can be used for tracing, auditing, and more elaborate
protection schemes. It is passed as the first argument, of type cap_t, to every operation
procedure. For example, to make Jill secure, we would replace the code fragments in jill.c

void op_jill read(index, valPtr)
int index, *valPtr;

{

}
void op_jill write(index, value)
int index, value;

{
}
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by

void op_jill_read(cap, index, valPtr)
cap_t cap;
int index, *valPtr;

{

}

void op_jill_write(cap, index, value)
cap_t cap;
int index, value;

{

}

24.5 Secure Loader and White Pages Server

24.5.1 Secure Loader

The secure loader is a trusted server that invokes secure Camelot clients for the user. It loads the
executable image and starts the client after checking that the client has not been corrupted. Then,
it obtains a random puzzle solution from the white pages for the client when it registers the client
with the white pages. It also initializes the client with the puzzle associated with the white pages so
the client can make a secure server call to the white pages. At the same time, it also passes a secure
random seed to the client’s pseudo-random number generator. Finally, it gives a default capability
to the client for using the white pages server to perform puzzle lookups. The puzzle solution, the
random seed, and the initial capability is sent to the client via.a RPC using the bootstrap port.
Since both the secure loader and the newly started secure client are resident on the same machine,
the content of these messages will never be visible on any networks. The Disk Manager plays a
corresponding role for servers.

24.5.2 White Pages

As we will discuss in Section 24.7, the security of Strongbox depends on a constant which is the prod-
uct of two large primes. Successfully breaking Strongbox’s authentication routine is algorithmically
equivalent to factoring the constant. We have provided a default composite number in the Camelot
release. If this value should be changed for a particular installation, a new number can be generated
by running the NewSecrets program, also included with the Camelot release. NewSecrets
generates new header files containing a new composite number and secret factors with which Strong-
box is built. Of course, binaries compiled with one set of constants are incompatible with those
compiled with another set of numbers.
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24.6 Interfaces

The key idea here is that every RPC message is prepended with a capability which is checked prior
to invoking the operation at the server. The messages are also encrypted, so that somebody listening
on the network will not have access to the data (excluding port names).* The macros mentioned in
Section 24.4 performs the prepending, and the Strongbox demultiplexing procedure transparently
performs the access check. The first argument of every operation routine in a secure server is the
capability used by the client; the routines may use thisargument to perform finer grain access checks.

24.6.1 Client/Server Interfaces

In addition to the normal service remote operations that a scrver provides, each sccure server has
other remote procedures that are defined by Strongbox. Strongbox’s capability subsystem exports
remote operations to perform access control administration such as adding a new uset, giving a user
the rights to invoke a remote operation, or removing a user’s rights. Since the Strongbox’s remote
operations are treated in the same manner as the scrvice remote operations, an administrator may
give administrative privileges to a trusted user as well.

There are currently three remote routines which allow an administrative login to manipulate the
access permissions list.

void op_CapMech_AddUser(authCap,userName)
cap_t authCap;
cap_symbolic_user_name_t userName;

authCap the invoking user’s capability (administrator).
userName the symbolic name of the user who is being added.

void op_CapMech_Permit(authCap,userName,operation)

cap_t authCap;
cap_symbolic_user_name_t userName;
cap_operation_name_t operation;

authCap the invoking user’s capability (administrator).

userName the symbolic name of the user who is being permitted to
invoke the operation.

operation the name of the operation which the user userName is
now allowed to invoke.

“The prepended capability is in two parts, an index and a secret random number. The index is not encrypted so that the
receiver can determine which key to use to deceypt the rest of the message; the random pumber is encrypted along with the
rest of the data, so the capability is not leaked.
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void op_CapMech_Unpermit(authCap,userName, operation)

cap_t .authCap;
cap_symbolic_user_name_t userName;
cap_operation_name_t operation;

authCap the invoking user’s capability (administrator).

userName the symbolic name of the user who is being unpermitted to
invoke the operation.

operation the name of the operation which the user userName is
now disallowed from invoking.

The operation CapMech_AddUser adds a ncw user; CapMech Permit gives a user permis-
sion to invoke the named operation; and CapMech _Unpermit removes the user’s permission to
invoke the operation. Note that these operations are treated in the same fashion as service remote
operations, so an administrator may give permission to invoke CapMech Unpermit, for example,
to security personnel.

The administrator login is locall by default. This should be changed as appropriate for the
installation.

24.6.2 White Pages Interface

void op_Wp_Fp_Check(cap, fn, data, size, ok)

cap_t cap;
sec_filename_t fn;

char *data; /* OOL */
vm_offset t size;

int *ok:

cap the capability of the invoker.

fn the name of the file whose data is being checked.

data the out-of-line transmitted data which is the contents of the file.
size the size of data transmitted.

ok the return area for whether the data fingerprints correctly.

This routine allow users to check the fingerprints of data. The argument data contains the
contents of the file £n. The white pages returns in *ok a nonzero if the data’s fingerprint matches
the stored fingerprint.

24.7 Security Algorithms

24.7.1 Zero Knowledge Authentication

Authentication is at the heart of the security system for any loosely-coupled distributed operating
system. For notational convenience, we refer to a client denoted A and a server denoted B. A and B
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may reside on different processors. A and B must prove their identities. The problem is made more
difficult since A and B must typically accomplish this by exchanging messages over a potentially
vulnerable data network. Since messages transmitted over the network may be intercepted by a
third party, C, A and B must find a way to prove their identities without revealing information which
would allow C to successfully feign an identity as A or as B.

How well do existing authentication methods accomplish this goal? In practice, not very well.
For example, Rivest, Shamir, and Adieman proposed an authentication method based on thc RSA
public-key signature methods [95]. In their protocol, values arc encrypted according to a public-
key encryption function E(m) = m® mod n, where m is a message, e is an encryption key, and
n is the product of two large primes p and q. Decryption is accomplished through the function
D(c) = ¢# mod n, where c is the ciphertext, d is chosen so that ed = 1 mod (p — 1)(g — 1). Itis
true there is no published method for quickly decrypting messages given only e and n, and not the
factorization of n. However, this method leaks information. For example, Lipton points out that
the well known Legendre function L satisfies the relation L(m.n) = L(E(m).n) [68]. Indeed, the
problem is much worse than this. Alexi, Chor, Goldreich, and Schnorr recently proved that if an
adversary can, 50% + ¢ of the time, find the low order bit of m given E(m), the adversary can invert
arbitrary RSA encryptions[5, 19]. A corollary to this result is that the usual query-response methods
for encryption, such as the family of protocols described in [79], an adversary can emuiate another
agent in the system after engaging in O((log n)?) authentications.

Needham and Schroeder have suggested an authentication method which uses private-key cryp-
tographic methods [84]. Needham and Schroeder’s work presupposes on a secure key distribution
method and a private key cryptosystem. Recent work by Luby and Rackoff suggests that authenti-
cation methods depending on DES are vulnerable to a “low-bit” attack similar to the one mentioned
above for the RSA cryptosystem [76]. For example, the first author has found a method to subvert
the authentication scheme used by the Andrew File System VICE [100], which uses a strategy
similar to Needham and Schroeder’s.

To give users confidence in a system, we would like to be able to prove that an authentication
method does not leak information. Several researchers have independently proposed protocols,
termed zero-knowledge protocols, which satisfy this constraint given the complexity assumption
that P # NP [37, 32]. To get a flavor of the type of argument used, we summarize a zero knowledge
protocol below for A proving to B that some graph G with n vertices known to both A and B contains
a k~clique (that is, a set Q of k vertices such that between every two vertices in Q there exists an
edge). (This version of the proof is due to M. Blum.) Let G be a graph with n vertices be known to
both A and B. Suppose that A knows a k-clique in G. Since the problem of finding a k-clique in an
arbitrary graph is NP-complete, B can not in general find the k-clique. This protocol will allow A to
prove to B that G has a k-clique without revealing any information about the vertices in Q.

1. A secretly labels each vertex of G with random unique integer from 1 to n.

2. A prepares ’i("z—:—') envelopes labeled uniquely with a pair of integers (i,j),i < j. A puts “Yes”
in the envelope labeled (i,j) if an edge exist between the vertices labeled i and j, and “No”
otherwise.

3. A seals the envelopes and presents them to B. B flips a coin and reports its value to A. If it
is heads, A must open all the envelopes and show the numbering of the vertices of G. B then
verifies that the descriptions are correct. On the other hand, if B gets tails, A must then open
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just the envelopes which are labeled (i.j) where i and j belong to Q. B then verifies that all
envelopes contain “Yes”.

4. The above protocol is repcated 7 times (with an independent random numbering assigned cach
time in step 1). 1f A successfully responds to B’s queries, the probability that A does know
know a proof is 27"

It is clear that if A knows a k-clique and correctly foliows the above protocol, A will succeed.
On the other hand, suppose C is trying to masquerade as A. Since C does not know a k-clique,
C has two choices: it can correctly perform step 2 (in which case it is caught whenever B gets
tails) or it can put false values in the envelopes (in which casc it is caught whenever 8 gets heads).
Hence in each of the 1 iterations of the protocol the probability that C’s ignorance is revealed is
1/2. After ¢ iterations, C will be caught with probability 1 — 27‘. Finally, notice that B does not
get any information about the location of the clique. If B could find information about the clique
from the above protocol, it could generate the same information by flipping a coin and generating a
random numbering of the graph when it gets heads and a random numbering of a complete graph
on k vertices when it gets tails.

Notice that since any problem lying in NP can be reduced to the NP-complete problem &-
clique {57], A could use this protocol to prove to B that it had a proof or disproof of, for example,
Fermat's Last Theorem. At the end of this protocol, B would be convinced that A did in fact have
a proof or disproof without having any idea which way the problem was resotved, much less any
idea of the technique used to solve the problem. Certainly, this protocol could be used to generate
authentication proofs: A would publish the graph G in a public white pages. To prove its identity, A
would give a zero-knowledge proof of the existence of a k-clique in the graph.

In practice, this protocol would not work well. First, A would have to find a graph G in which
it was computationally intractable to find a k-clique. While it is true that our complexity hypothesis
guarantees that such graphs must exist, most random graphs with k-cliques can have those cliques
found through efficient heuristics [34]. Second, A and B would have to develop a good cryptographic
scheme for implementing “envelope exchange”. For even a modest security level the size of data
involved here is on the order of 102% bytes. Using the highest bandwidth transmission techniques
available today, execution of this protocol would exceed the time remaining before the heat death
of the universe.

24.7.2 Our protocol

In research described in [118], we have developed a family of zero-knowledge protocols which are
efficient for real use in applications. Our timing figures are given in Section 24.8.3. Below we give
a simplified (and slightly less efficient) version of the protocol.

The protocol we use can depend on one of two complexity assumptions: that factoring large
integers can not be done in polynomial time, or that it is hard to invert messages encrypted by
random keys under DES. Other similar complexity assumptions may be used instead. The protocol
described below depends on the complexity of factoring integers. We recall the following lemma
by Rabin [89]: If there exists a polynomial time algorithm for finding square roots modulo n = pq,
where p and q are large primes, then we can factor pq in polynomial time. Rabin observed that we
can take a random integer r between 1 and pg — 1; check that GCD(r, n) # 1 (if this value is p or g,
then we have factored #). Calculate x = 2 mod » and find a square root s, so that s> = x = r* mod n;
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a simple number-theoretic argument demonstrates that x has four square roots modulo #, including
r and —r. Since r is chosen at random, there is a 50% chance thats # +r mod n. If s = +r mod n,
then we can pick a new r and repeat the algorithm. If s # +r mod n, then it is the case that
GCD(r + 5. n) = p or q. Hence finding square roots is equivalent to factoring.

In this protocol, we assume that the system manager publishes a product of two large primes
n = pq, keeping the factorization secrct. This » can be used for all authentication protocols, and
no one need ever know its factorization. To initialize its puzzle, A picks a random r and publishes
x = r* in the white pages. A will prove it knows a square root of x without revealing any information
about the value.

Here is the protocol:

1. A computes t temporary random values, vi.va. ..., v;, where each v; satisfies 1 < v; < pg~ 1.
A sends to B the vector < v2 mod n.v3 mod n...... v mod n >.

2. B flips ¢ independent coins and send back a vector of ¢ random bits < by..... b, > to A.

3. For1 <1<t A computes

Lo ifbi =0
"7 1 rv; modn otherwise

A transmits the vector < z;..... z >.

4. B verifies that for 1 < i < ¢, that

2. vVmodn ifb;=0
71 »? modn otherwise

If the equalities hold, A has authenticated its identity to B with probability 1 — 2°.

Once again note that if A knows a value r such that r? = x mod #, then it can easily follow the
above protocol. Suppose C is trying to masquerade as A. Since C doesn’t know such a value r, it
can not know both v;) and rv; mod n, since r = rvi(v;)~! mod n. Finally, all that B sees is a series -
of random values of the form < z;.z2 mod n >. If B could find any information about r from the
above protocol, it could do so by generating a set of ¢ random values and squaring them modulo n,
and thus factoring n.

The above protocol uses only an expected 3¢ multiplications to generate security of 1 — 271
Our improved protocol uses only expected 1.5¢ multiplications to achieve the same level of security.

24.7.3 Self-securing programs

As mentioned above, our algorithm presumes communication networks which are potentially vulner-
able. A and B need to use methods to protect the privacy and integrity of their data. If we extend an
authentication algorithm to also support key exchange, A and B can transmit their messages though
highly secure private-key encryption methods. We have adapted our algorithms to also perform this
operation — A can send a temporary key e4 and B can send a temporary key eg. Both parties can
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then use a trusted private key encryption method, such as DES with the key e = e4 -+ ep, where - is
bit-wise exclusive-or. Henee, if A and B have protected address spaces, we can make all messages
transmitted in the system public, since no observer can find the encryption key used. Also, sending
messages encrypted by the key removes the need to re-authenticated until either party decides to
establish a new temporary key. This approach yields a self-securing program which requires only a
minimal amount of sccurity in our base operating system. See [118] for details of our key-exchange
algorithm.

Indeed, our algorithm obviates the need to ever use public key cryptography. If A wishes to
transmit a message to B without having shared private key, A can simply authenticate itself to B
exchanging a temporary cncryption key. All further communications are protected by encryption.
The signature functions of public key cryptography can be performed by the fingerprinting algorithm
given below.

24.7.4 Fingerprinting

Karp and Rabin introduced an algorithm which computes a cryptographic checksum [58}. Their
algorithm takes a bit string s of arbitrary length and secret key k of d bits (where d — 1 is prime) and
returns a fingerprint sequence of d — 1 bits ox(s). Each key & defines a fingerprint function, and if
the keys are chosen with uniform distribution, the family of fingerprint functions o4 can be viewed
as a provably good random hash function in the style of [17]. Without the secret key, computing a
fingerprint given a string of bits is intractable. On the other hand, if the secret key is known, it is
casy to compute the fingerprint.

Given the fingerprint algorithm, the problem of protecting the integrity of data from alteration
becomes much simpler. For example, to protect a file F, we could store < F.ox(F) >. If an
adversary attempts to alter the file by replacing it with F', he will need to calculate ox(F'). But
since the adversary does not know &, he can not compute the fingerprint of F’. Even if the adversary
attempts to find a F with the same fingerprint 0x(F) = 0x(F"), he will be thwarted, since the problem
of finding an input which generates a given fingerprint is intractable without the key value k.

The fingerprinting algorithm views a sequence of bits s as a polynomial f ;(x) over the integers
modulo 2. For example, the bit sequence s =“100101001” is taken to be the polynomial f (x) =
x4+ + 1. The secret key for this algorithm corresponds to a random irreducible polynomial g(x)
of degree d— 1 over the integers modulo 2. Tt is extremely easy to generate these polynomials (several
approaches are outlined in [91, 90]) and we have implemented two different efficient routines for
doing so. Compute r(x) = f (x) mod g(x). Then r(x) is a polynomial over the integers modulo 2 of
degree at most d — 1. Both the polynomial r(x) and the key k can be represented as a string of d bits.
The bits produced by the algorithm define the o function.

Because this algorithm can be conveniently implemented as a systolic array, a group of re-
scarchers led by H. T. Kung chose it to implement in hardware {33]. By using new techniques, we
have software implementations of this algorithm which run on the IBM RT/APC in time comparable
with the fastest hardware implementation (see Section 24.8.3).
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24.8 Special Issues

24.8.1 Booting

Special problems arise when a Camclot system is booted. The boot program must pick up the
fingerprint key so that it can validate the authenticity of the Mach kernel, the Disk Manager, the
whitc pages server, and the secure loader; similarly, the white pages server must pick up a random
sced for a pscudo-random number gencrator which it will use for authentication and for gencrating
sceds for secure servers that the sccure loader brings up.

In the current version of Strongbox, we omit checking the fingerprints of the core programs and
the initial pseudo-random seced is obtained from system statistics such as the last modification time
of the /tmp directory, the control terminal, the current time, ctc. Note that these system statistics
are not good sources of random numbers: they are used merely for expediency. In future versions,
we will address these problems by having the fingerprint values and initial random seed be entered
by an operator. There are several ways to insure that the white pages server, secure loader, Disk
Manager, and kernel are correct; one of the most straightforward is to make sure that the boot ROM
associated with the machine calls a routine which calculates the fingerprint of the secure loader and
the operating system kernel before booting those programs. If the fingerprinted values match the
correct values, we can be sure that all is well since forging a fingerprint will succeed only 2732 of
the time. But how can we insure that the operator entering these values can be trusted? Several
solutions to the “trusted operator™ problem are possible including physical security measures and
password based authentication of operators. Strongbox validates users by requiring them to enter
passwords when they initially bringing up the system. Once the secure loader and Disk Manager are
running, the system will continue running sccurely since the secure loader will verify the fingerprint
of every server it brings up and will pass it a random seed it can use for its own pseudo-random
number generation.

The pseudo-random numbers are used for authentication, key exchange, and puzzle generation.
All puzzles other than that of the white pages server are generated as needed. The white pages
server’s puzzle solution as well as the key exchange secret may be changed for any particular
instance of Strongbox, but once fixed they can not be changed. These secrets are present in C header
files that are not exported to the user. These files should not be placed on an untrustworthy machine.
Similarly, the values are present in the wp binary, so that file should also be secret. Currently, we
simply assume that this binary is kept on removable media and that the operator removes it after
booting Camelot.

24.8.2 Starting Strongbox

This section describes how to start up the current version of Strongbox after Camelot is booted. The
start up procedure does not yet address the issues described above; future versions of Strongbox will
have a simpler and more automated start up procedure that will be run when the kernel is booted.
After successfully bringing up Camelot, there are some additional steps needed before secure
servers and clients can be run. First, the white pages server and the secure loader must be brought
up by using the NCA program. Add the two servers using the as command, and start them using
the ss command. The white pages server must be completely up prior to starting the secure loader.
When the white pages server and the secure loader are up, secure servers can be added to the
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Node Server’s database and started. Secure clients are rufi via the sec_run interface. The two
system clients wp.admin and sec admin are automatically fingerprinted when the white pages
server starts up; other clients must be first fingerprinted. To do this, run the wp-admin program. Use
the f (fingerprint) command to fingerprintthe secure client, commit the transaction, and now
sec.run can be used to execute the client. Note that if the secure server was just initialized, nobody
except the administrator will have any access permissions, so sec_admin must be run to give users
permissions. Start up sec.admin via sec.run as was done with wp.admin, and give the name
of the secure server at the "Server " prompt (this is the name in the SEC_INITIALIZE SERVER
macro). The p (permit) command will prompt for the name of the RPC and the user name to
whom permission should be given.

24.8.3 Performance

This section gives timing figures for Strongbox’s implementations of authentication and fingerprint-
ing. Our timing figures are for an IBM-RT/APC, which is a RISC machine running at 4 MIPS.

An IBM-RT/APC requires 105 mS to perform (one-way) authentication in addition to the RPC
overhead. To perform the authentication, the client invokes two RPCs. The overhead for performing
an RPC is approximately 35 msec [108]. We have an efficient software implementation of DES
which works at a rate of 220 encryptions per sec.

An IBM-RT/APC achieves a fingerprinting rate of 880 KByte/sec. The fingerprinting routine
. uses a 65536 (2'9) entry table of pre-computed partial residues to achieve this speed.® The table
contains the value x>2a(x) mod g(x) where a(x) is the two byte index considered as a polynomial
modulo 2, and g(x) is the irreducible polynomial used (in our implementation, deg(g(x)) = 31). The
inner loop simply reads data two bytes at a time and uses the value as an index into this table to
obtain the partial residue to exclusive-or into a running residue.

A brute force initialization of the 65536-entry table would take considerable time. To mmahze
the 65536-entry table efficiently, we first compute 256-entry table of partial residues. The 256-entry
table contains the residues x>2a(x) mod g(x) where a(x) is the byte index considered as a polynomial
modulo 2, and g(x) is the irreducible polynomial as before. The larger table is computed from the
smaller by indexing into the smaller table first by the upper 8 bits of the larger table index, and then
indexing again using the lower 8 bits of the larger table index exclusive-or’ed with the upper 8 bits
of the result of the previous look-up. The initialization cost is approximately 1 sec.

In security, smaller code size is desirable since the system is easier to verify and is less likely
to contain bugs. The core authentication routines consists of 75 lines of C code not including
comments. The fingerprinting code consists of 211 lines of C code not including comments. Our
total core routines are relatively small: 248 lines of C code.

Currently, the secure loader fingerprints the entire image of the client program before allowing
execution. This has some performance impacts: instead of demand paging from the file and per-
forming page-out to a secure paging device, reading the entire program causes excessive paging/disk
activity that might be avoidable (some pages of the program may never be needed). This would
mean that any external memory managers must handle page-in requests of program text by checking
a per-page fingerprint against a known value given by the white pages server’s database.

*We also have a less memory intensive version which uses a 256 entry table fingerprints at a rate 710 KByte/sec.
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24.9 Conclusions

We have demonstrated that self-securing programs are an effective and efficient solution to the
distributed computer security problem. Our approach is aimed at the client-server model, and could
be straightforwardly ported to other client-server systems. While we have not attempted to address
other models of distributed computation, any system in which various agents communicate or store
data may be able to use some of these algorithms. We will continue to improve Strongbox and plan
to address solutions to the denial of service problem in future work.
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